157 research outputs found

    Open Design and 3D Printing of Face Shields: The Case Study of a UK-China Initiative

    Get PDF
    At the start of the COVID-19 outbreak, many countries lacked personal protective equipment (PPE) to protect healthcare workers. To address this problem, open design and 3D printing technologies were adopted to provide much-in-need PPEs for key workers. This paper reports an initiative by designers and engineers in the UK and China. The case study approach and content analysis method were used to study the stakeholders, the design process, and other relevant issues such as regulation. Good practice and lessons were summarised, and suggestions for using distributed 3D printing to supply PPEs were made. It concludes that 3D printing has played an important role in producing PPEs when there was a shortage of supply, and distributed manufacturing has the potential to quickly respond to local small-bench production needs. In the future, clearer specification, better match of demands and supply, and quicker evaluation against relevant regulations will provide efficiency and quality assurance for 3D printed PPE supplies

    An energy consumption estimation method for the tool setting process in CNC milling based on the modular arrangement of predetermined time standards

    Get PDF
    Modeling and estimating the energy consumption of computer numerical control (CNC) milling systems have been recognized as essential ways to realize lean energy consumption management and improve energy efficiency performance. As the preparatory phase, considerable time and energy are consumed in the tool setting process. However, research on the tool setting process mainly focuses on accuracy and operational efficiency, and the energy consumption is usually ignored or simplified. Accurately estimating the energy consumption of the tool setting process is thus indispensable for reducing the energy consumption of CNC milling systems and improving their energy efficiency. To bridge this gap, an energy consumption estimation method for the tool setting process in CNC milling based on the modular arrangement of predetermined time standards (MODAPTS) is presented. It includes three steps: (i) operations decomposition and determination of the MODAPTS codes for the tool setting process, (ii) power modeling of the basic action elements of the machine tool, and (iii) energy consumption modeling of the tool setting process. Finally, a case study was conducted to illustrate the practicability of the proposed method via energy consumption modeling of the tool setting process using an XH714D CNC machine center with a square workpiece, in which the estimation values of the operating time and the energy consumption for the tool setting process were 210.786 s and 140,681.68 J, respectively. The proposed method can increase the transparency of energy consumption and help establish labor-hour quotas and energy consumption allowances in the tool setting process

    Identifying vulnerable plaques: A 3D carotid plaque radiomics model based on HRMRI

    Get PDF
    BackgroundIdentification of vulnerable carotid plaque is important for the treatment and prevention of stroke. In previous studies, plaque vulnerability was assessed qualitatively. We aimed to develop a 3D carotid plaque radiomics model based on high-resolution magnetic resonance imaging (HRMRI) to quantitatively identify vulnerable plaques.MethodsNinety patients with carotid atherosclerosis who underwent HRMRI were randomized into training and test cohorts. Using the radiological characteristics of carotid plaques, a traditional model was constructed. A 3D carotid plaque radiomics model was constructed using the radiomics features of 3D T1-SPACE and its contrast-enhanced sequences. A combined model was constructed using radiological and radiomics characteristics. Nomogram was generated based on the combined models, and ROC curves were utilized to assess the performance of each model.Results48 patients (53.33%) were symptomatic and 42 (46.67%) were asymptomatic. The traditional model was constructed using intraplaque hemorrhage, plaque enhancement, wall remodeling pattern, and lumen stenosis, and it provided an area under the curve (AUC) of 0.816 vs. 0.778 in the training and testing sets. In the two cohorts, the 3D carotid plaque radiomics model and the combined model had an AUC of 0.915 vs. 0.835 and 0.957 vs. 0.864, respectively. In the training set, both the radiomics model and the combination model outperformed the traditional model, but there was no significant difference between the radiomics model and the combined model.ConclusionsHRMRI-based 3D carotid radiomics models can improve the precision of detecting vulnerable carotid plaques, consequently improving risk classification and clinical decision-making in patients with carotid stenosis

    A Fully Tunable Single-Walled Carbon Nanotube Diode

    Full text link
    We demonstrate a fully tunable diode structure utilizing a fully suspended single-walled carbon nanotube (SWNT). The diode's turn-on voltage under forward bias can be continuously tuned up to 4.3 V by controlling gate voltages, which is ~6 times the nanotube bandgap energy. Furthermore, the same device design can be configured into a backward diode by tuning the band-to-band tunneling current with gate voltages. A nanotube backward diode is demonstrated for the first time with nonlinearity exceeding the ideal diode. These results suggest that a tunable nanotube diode can be a unique building block for developing next generation programmable nanoelectronic logic and integrated circuits.Comment: 14 pages, 4 figure

    Automatic Artery/Vein Classification Using a Vessel-Constraint Network for Multicenter Fundus Images

    Get PDF
    Retinal blood vessel morphological abnormalities are generally associated with cardiovascular, cerebrovascular, and systemic diseases, automatic artery/vein (A/V) classification is particularly important for medical image analysis and clinical decision making. However, the current method still has some limitations in A/V classification, especially the blood vessel edge and end error problems caused by the single scale and the blurred boundary of the A/V. To alleviate these problems, in this work, we propose a vessel-constraint network (VC-Net) that utilizes the information of vessel distribution and edge to enhance A/V classification, which is a high-precision A/V classification model based on data fusion. Particularly, the VC-Net introduces a vessel-constraint (VC) module that combines local and global vessel information to generate a weight map to constrain the A/V features, which suppresses the background-prone features and enhances the edge and end features of blood vessels. In addition, the VC-Net employs a multiscale feature (MSF) module to extract blood vessel information with different scales to improve the feature extraction capability and robustness of the model. And the VC-Net can get vessel segmentation results simultaneously. The proposed method is tested on publicly available fundus image datasets with different scales, namely, DRIVE, LES, and HRF, and validated on two newly created multicenter datasets: Tongren and Kailuan. We achieve a balance accuracy of 0.9554 and F1 scores of 0.7616 and 0.7971 for the arteries and veins, respectively, on the DRIVE dataset. The experimental results prove that the proposed model achieves competitive performance in A/V classification and vessel segmentation tasks compared with state-of-the-art methods. Finally, we test the Kailuan dataset with other trained fusion datasets, the results also show good robustness. To promote research in this area, the Tongren dataset and source code will be made publicly available. The dataset and code will be made available at https://github.com/huawang123/VC-Net

    Homogeneous bilayer graphene film based flexible transparent conductor

    Full text link
    Graphene is considered a promising candidate to replace conventional transparent conductors due to its low opacity, high carrier mobility and flexible structure. Multi-layer graphene or stacked single layer graphenes have been investigated in the past but both have their drawbacks. The uniformity of multi-layer graphene is still questionable, and single layer graphene stacks require many transfer processes to achieve sufficiently low sheet resistance. In this work, bilayer graphene film grown with low pressure chemical vapor deposition was used as a transparent conductor for the first time. The technique was demonstrated to be highly efficient in fabricating a conductive and uniform transparent conductor compared to multi-layer or single layer graphene. Four transfers of bilayer graphene yielded a transparent conducting film with a sheet resistance of 180 {\Omega}_{\square} at a transmittance of 83%. In addition, bilayer graphene films transferred onto plastic substrate showed remarkable robustness against bending, with sheet resistance change less than 15% at 2.14% strain, a 20-fold improvement over commercial indium oxide films.Comment: Published in Nanoscale, Nov. 2011 : http://www.rsc.org/nanoscal

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Quantitative Analysis of the Contributions of Climatic and Anthropogenic Factors to the Variation in Net Primary Productivity, China

    No full text
    Accurate quantification of the contributions of climatic and anthropogenic factors to the variation in NPP is critical for elucidating the relevant driving mechanisms. In this study, the spatiotemporal variation in net primary productivity (NPP) in China during 2000–2020, the interactive effects of climatic and anthropogenic factors on NPP and the optimal characteristics of driving forces were explored. Our results indicate that NPP had obvious spatial differentiation, an overall increasing trend was identified and this trend will continue in the future for more than half of the pixels. Land use and Land cover and precipitation were the main factors regulating NPP variation at both the national scale and the sub-region scale, except in southwest China, which was dominated by altitude and temperature. Moreover, an interactive effect between each pair of factors was observed and the effect of any pair of driving factors was greater than that of any single factor, manifested as either bivariate enhancement or nonlinear enhancement. Furthermore, the responses and optimal characteristics of NPP concerning driving forces were diverse. The findings provide a critical understanding of the impacts of driving forces on NPP and could help to create optimal conditions for vegetation growth to mitigate and adapt to climate changes
    • …
    corecore