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Retinal blood vessel morphological abnormalities are generally associated with
cardiovascular, cerebrovascular, and systemic diseases, automatic artery/vein (A/V)
classification is particularly important for medical image analysis and clinical decision
making. However, the current method still has some limitations in A/V classification,
especially the blood vessel edge and end error problems caused by the single scale and
the blurred boundary of the A/V. To alleviate these problems, in this work, we propose
a vessel-constraint network (VC-Net) that utilizes the information of vessel distribution
and edge to enhance A/V classification, which is a high-precision A/V classification
model based on data fusion. Particularly, the VC-Net introduces a vessel-constraint (VC)
module that combines local and global vessel information to generate a weight map
to constrain the A/V features, which suppresses the background-prone features and
enhances the edge and end features of blood vessels. In addition, the VC-Net employs
a multiscale feature (MSF) module to extract blood vessel information with different
scales to improve the feature extraction capability and robustness of the model. And the
VC-Net can get vessel segmentation results simultaneously. The proposed method is
tested on publicly available fundus image datasets with different scales, namely, DRIVE,
LES, and HRF, and validated on two newly created multicenter datasets: Tongren and
Kailuan. We achieve a balance accuracy of 0.9554 and F1 scores of 0.7616 and 0.7971
for the arteries and veins, respectively, on the DRIVE dataset. The experimental results
prove that the proposed model achieves competitive performance in A/V classification
and vessel segmentation tasks compared with state-of-the-art methods. Finally, we
test the Kailuan dataset with other trained fusion datasets, the results also show
good robustness. To promote research in this area, the Tongren dataset and source
code will be made publicly available. The dataset and code will be made available at
https://github.com/huawang123/VC-Net.
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INTRODUCTION

Retinal blood vessels have attracted widespread research efforts
as these vessels represent the only internal human vascular
structures that can be observed noninvasively. Retinal vessel
abnormalities reflect the cumulative damage caused by chronic
diseases such diabetes and hypertension and represent an
important risk indicator for many systemic and cardiovascular
diseases (Wong et al., 2004). And the artery/vein (A/V) may
be affected differently by variations in disease types and
progression. For example, artery narrowing is mostly associated
with arterial hypertension, whereas vein widening is related
to increased brain pressure, stroke, and similar cardiovascular
diseases. Hence, accurate image-based analysis and evaluation
methods for the morphological evaluation of A/V changes
might give an early insight and a deeper understanding of the
pathophysiology of such diseases. The A/V caliber ratio (Wong
et al., 2004) has been used as a predictor for cardiovascular
diseases. Current clinical methods for retinal vessel segmentation
and A/V classification mainly rely on manual segmentation.
However, due to the high complexity and diversity of vessel
structures, manual segmentation brings inevitable shortcomings,
including being time-consuming and laborious, having inter-
rater variability and subjectivity, and having lower efficiency and
accuracy. Thus, automatic methods for A/V classification and
vessel segmentation are highly desirable in clinical settings. The
advantages and disadvantages of current clinical methods and
automatic methods are shown in Figure 1.

In recent years, several automated techniques have been
proposed for retinal A/V classification (Ishikawa et al., 2005;
Fraz et al., 2012a; Orlando et al., 2017). These techniques may
be categorized into graph-based (Dashtbozorg et al., 2014; Joshi
et al., 2014; Estrada et al., 2015; Hu et al., 2015; Pellegrini et al.,
2018; Srinidhi et al., 2019) and feature-based (Niemeijer et al.,
2009; Zamperini et al., 2012; Mirsharif et al., 2013; Xu et al.,
2017; Huang et al., 2018a,b) techniques. Yet, in graph-based
approaches, difficulties may be encountered when some vascular
regions cannot be segmented, and hence, vessel segments cannot
be reliably linked (Welikala et al., 2017). Besides, for feature-
based techniques, most recent studies use a two-stage approach
for retinal A/V classification. Vessels are firstly segmented from
the background; next, the segmented vessels are categorized
into arteries and veins by using purely handcrafted features in
feature-based methods or by merging edge information in graph-
based methods. However, the two-stage approach suffers from the
heavy dependence of the A/V classification outcomes on vessel
segmentation accuracy. In fact, if the accuracy of blood vessel
segmentation is low in the first stage, the A/V classification results
will not be good either in the second stage.

With the development of deep learning, many convolutional
neural network-based methods have been proposed for joint
vessel segmentation and A/V classification. Xu et al. (2018)
adopted an improved fully convolutional network (FCN)
architecture to segment retinal arteries and veins simultaneously.
This method enabled end-to-end multilabel segmentation of
color fundus images. AlBadawi and Fraz (2018) proposed
an FCN architecture with an encoder–decoder structure for

pixel-based A/V categorization. Meyer et al. (2018) also adopted
the FCN architecture for A/V classification and demonstrated
high performance on major vessels with thicknesses of more
than three pixels. Hemelings et al. (2019) proposed a novel
FCN-based U-Net architecture for simultaneous blood vessel
semantic segmentation and A/V discrimination. Ma et al. (2019)
proposed an enhanced deep architecture with a spatial activation
mechanism for joint vessel segmentation and A/V identification.
Li et al. (2020) made a highly confident prediction about the
peripheral vessels by taking the structural information among
vessels into account with post-processing.

However, automatic vessel segmentation and A/V
classification are still considered difficult tasks due to the
following challenges:

(1) The multiscale structure of blood vessels is easily
overlooked. These methods focus on large-scale structures
such as thick blood vessels, but the performance is poor for
small-scale structures such as the edge and the end of thick
blood vessels, as shown in Figure 2D.

(2) There is extreme imbalance between positive samples
(blood vessels) and negative samples (non-vessel areas)
in retinal fundus images, where blood vessels account
for only 15% of the whole image. Correspondingly, the
proportion of arteries and veins is only about 7.5% each. As
a result, directly classifying the pixels of the retinal image as
background, artery, and vein pixels is very challenging.

(3) Distinguishing between arteries and veins can be highly
confusing. The results of the aforementioned methods still
show poor localization performance between arteries and
veins; for example, the same blood vessel may be half
recognized as an artery and half as a vein, as shown in
Figure 2B.

(4) The choroid is similar to blood vessels and is
easy to misclassify.

Besides, most of these existing methods are only validated
on specific datasets. However, in clinical applications, the
performance would underperform when tested on datasets with
a different image resolution, imaging equipment, and population.
For example, when generalizing a trained model to datasets
with different center scales, the performance of the model
usually deteriorates. The characteristic differences of retinal
fundus images among different scales will also influence the
segmentation results. One possible solution to this problem is
labeling some samples of the new dataset to fine-tune the pre-
trained model, but this process is expensive and time-consuming.

In order to alleviate these challenges, in this work, we
introduce a novel convolutional neural network for joint A/V
classification and vessel segmentation in retinal fundus images,
named the vessel-constraint network (VC-Net). Firstly, in order
to alleviate challenge (1), the VC-Net employs a vessel-constraint
(VC) module to enhance the microvessels and the edge of thick
vessels by using Gaussian kernel function probability maps to
enhance the feature weights of the blood vessel edge area. And
the multiscale feature (MSF) module is proposed to extract and
express blood vessel features at different scales in the encoder.
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FIGURE 1 | The proposed method can automatically and efficiently classify artery/vein (A/V) and segmented vessels from a retinal fundus image. The advantages of
this method are its great help to ophthalmologists compared with existing clinical methods.

Secondly, in order to alleviate challenges (2)–(4), the VC module
combines the global and local vessel information to generate a
weight map to constrain the A/V features, which suppresses the
background features. Not only can this alleviate the imbalance of
positive and negative samples, but this also pays more attention
to the features of arteries and veins to achieve better A/V
classification performance.

The key contributions of this study can be highlighted as
follows:

• For the first time, we propose a VC-Net that uses vessel
probability information to constrain A/V and enhance
learning of discriminative A/V features. In addition,

the VC-Net can also get blood vessel segmentation
results simultaneously.
• The newly designed VC module is powerful in A/V feature

extraction. The VC module is used to capture the distribution
information of vessels as a weight to constrain the A/V
features, which suppresses background-prone features to pay
more attention to vessel features. Data fusion (DF) alleviates
well the problem of imbalance between positive and negative
samples and helps us learn more discriminative A/V features.
At the same time, the VC module enhances the microvessels
and the edge of thick vessels by using Gaussian kernel function
probability maps to improve the feature weights of the blood
vessel edge area.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 June 2021 | Volume 9 | Article 659941

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-659941 June 10, 2021 Time: 12:25 # 4

Hu et al. Retinal Artery/Vein Classification

FIGURE 2 | Illustration of the challenges in classifying retinal blood vessels. The results shown in the figure are from U-Net. (A) The results map of artery and vein, (B)
two regions of interest in panel (A) are magnified. Left is prediction and right is ground truth, (C) the probabilities of vessel, and (D) the vessel errors compared with
ground truth.

• The MSF module of multiscale DF is proposed to extract and
express blood vessel features at different scales in the encoder,
where the diameters of the main vessels and microvessels vary
greatly. The DF training strategy is applied to improve the
robustness of the model by fusing information from datasets
with different scales.
• We publicly released the Tongren dataset with ground truth

annotation. The lack of retinal fundus image data with
annotated label impedes further exploration of retinal vessel-
related researches such as vessel segmentation and A/V
classification in the deep-learning community. Therefore, we
established a dataset to promote these studies with a detailed
data description in the experimental setup section of this
paper.

The rest of this paper is organized as follows. Firstly,
we present the details of our proposed methodology in
Section “Materials and Methods”. Then, the descriptions of
the datasets and the experimental details are described in
Section “Experimental Setup”. Next, our experimental results

are presented in Section “Results”. Finally, the discussions and
conclusions follow in Section “Discussion and Conclusion.”

MATERIALS AND METHODS

The design details of the VC-Net are shown in Figure 3. Firstly,
we propose a VC module to capture the DF feature of the
distribution and edge information of the vessel and enhance the
microvessel and the edge of thick vessels. Then the distribution
and enhanced information are utilized as weights to activate
the A/V features and enforce the A/V classification module to
focus more on vessels and help us learn more discriminative
A/V features, for extremely unbalanced vessel and background.
In addition, we used the MSF module to extract blood vessel
features at different scales for varied diameters of the main vessels
and microvessels.

VC Module
In a retinal fundus image, blood vessels typically account for
about 15% of the full image. Consequently, the area proportion
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FIGURE 3 | A block diagram of the proposed vessel-constraint network (VC-Net) architecture.

of the arteries and veins is only about 7.5% each. Hence, directly
classifying the retinal image pixels into background, artery, vein,
and undecided pixels is a significant challenge task due to the
high-class imbalance and the scarcity of training samples. To
alleviate this problem, we designed a VC module at the end of
the framework to enhance A/V classification.

The VC module combines the local and global vessel
information to generate a weight map to constrain the A/V
features, which suppresses the background-prone features to
pay more attention to vessel features. In this way, it can
alleviate the problem of severe imbalance between positive and
negative samples. At the same time, we introduced Gaussian
kernel function probability maps to improve feature weights of
microvessels and the blood vessel edge area, thereby enhancing
the feature representation of microvessels and the edge of thick
vessels. The Gaussian activation function of the VC module is
defined as

F (x) = α
(
e−|x−0.5|

− e−0.5
)
+ 1

Where x belongs to the probability map of the whole blood vessel
segmentation, with values between 0 and 1, and α is a fixed
parameter (set to 1 in this experiment).

The function F(x) further focuses on local vessel information,
such as vascular boundaries and microvascular areas. Based on
experimental observations and earlier studies, the probability
of misclassifying vessel pixels is essentially concentrated around
0.5. These misclassified pixels come either from the vessel-
background boundary or the microvascular areas whose features
are not obvious and difficult to distinguish from the background.
The background and thick vessel pixels have a value near 0 or 1.

Through the function F(x), the activation weight value of a
pixel with a probability close to 0.5 was increased to [α(1 –
e−0.5)+ 1], while the activation weight values of the background
and main thick vessels were set close to 1. The activation function
constrains the activation weight value to be within [1, α(1 –
e−0.5)+ 1]. Note that F(0.5+ x1), x1 ∈ [0,0.5].

Multiscale Feature
As shown in Figure 4, the scale of blood vessels varies greatly
in retinal fundus images. On the one hand, the average artery
diameter is generally slightly smaller than the average vein
diameter. On the other hand, the average diameter for the main
blood vessels is much larger than that of the capillaries.

Therefore, we use the capabilities of the pre-trained Res2Net
(Gao et al., 2019) model to learn and understand the retinal vessel
image features at different scales in the encoder stage. Instead
of extracting features using 3 × 3 filter groups as in the ResNet
(He et al., 2016) bottleneck block (Figure 5A), smaller filter
groups connected in a hierarchical residual-type manner are used
(Figure 5B). After the 1 × 1 convolutional stage, the features are
split into k subsets, where the ith subset is denoted by xi, where
i ∈ {1, 2,. . ., k}. While all subsets have the same spatial size, the
channel count for each subset is 1/k times that of the input feature
map. Each subset xi (except for x1) has a 3× 3 convolutional filter
Fi(). Thus, the filter output yi can be written as

yi =


xi i = 1;
Fi (xi) i = 2;

Fi
(
(xi; yi−1 )

)
2 < i ≤ k.

Each 3 × 3 convolutional operator Fi() might get information
from all feature subsets {xj, j ≤ i}. When a feature subset xj is
processed by a 3 × 3 convolutional operator, the output result
may have an enlarged receptive field compared to xj.

Here, the scale dimension k is used as a control parameter.
A larger k value enables learning features with larger receptive
field sizes, with insignificant computation and memory overheads
due to concatenation.

Loss Function
We employ an end-to-end deep-learning scheme as our
underlying framework. The A/V loss is quantified by the
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FIGURE 4 | Arteries and veins of different scales in the retinal fundus images. Top left a major artery. Top right a major vein. Bottom left a minor artery. Bottom right a
minor vein.

FIGURE 5 | Comparison of the ResNet and Res2Net blocks (with a scale dimension of k = 4). (A) The conventional ResNet building block in CNN architectures.
(B) The multi-scale feature (MSF) module of Res2Net uses a group of 3 × 3 filters.
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commonly used cross-entropy loss function

L_AVce = −
1
n

n∑
i =1

(
yi log

(
y
′

i

)
+
(
1 − yi

)
log

(
1− y

′

i

))
While the vessel segmentation loss is quantified by the binary
cross-entropy

L_Vbce = −
1
n

1∑
c =0

n∑
i =1

yi log
(
y
′

i

)
Where n denotes the number of pixels in the input image, y’ is
the predicted output probability of a foreground pixel, y is the
ground-truth pixel label, and c denotes the cth class of the output.
The total loss is defined as

Loss = γ∗L_AVce + δ∗L_Vbce + β∗ ||W||22

Where γ = 0.6, δ = 0.4, and δ + γ = 1. We use L2 regularization
with a weight of β = 0.0002.

EXPERIMENTAL SETUP

In this section, we describe the used retinal image datasets,
the evaluation metrics for retinal vessel segmentation and A/V
classification, and the VC-Net training details.

Datasets
In this work, we evaluated our approach and assessed its clinical
applicability on five retinal fundus image datasets of different
scales. Three datasets are publicly available while the other two
were collected by authors. In order to validate the generalization
performance and robustness of our method by DF experiments,
we specifically annotated two multiscale datasets. An overview of
these datasets is given in Table 1.

DRIVE
Our model was firstly trained and tested on the publicly available
DRIVE database (Hu et al., 2013). This database contains 40 color
retinal fundus images with image dimensions of 584× 565 pixels.
These images were evenly divided into training and test sets with
20 images in each set. Pixel-wise labeling is provided for vessel
segmentation and A/V classification.

TABLE 1 | Overview of datasets used for artery/vein (A/V) classification and
vessel segmentation.

Datasets # images Resolution

DRIVE (Hu et al., 2013) 40 584 × 565

LES (Orlando et al., 2018) 22 1,444 × 1,620, 1,958 × 2,196

HRF (Odstrcilik et al., 2013) 45 3,304 × 2,336

Tongren 30 1,888 × 2,816

Kailuan 30 (1,588–2,112) × (1,586–2,112)

LES
The LES dataset (Orlando et al., 2018) contains 22 images with a
30◦ field of view (FOV) and a resolution of 1,444 × 1,620 pixels
for 21 images and a 45◦ FOV and a resolution of 1,958 × 2,196
pixels for one image. The images are equally divided into training
and test sets with 11 images in each set.

HRF
The HRF dataset (Odstrcilik et al., 2013) contains 45 images
equally divided among three categories, namely, healthy subjects,
patients with diabetic retinopathy, and patients with glaucoma.
Images were captured with an FOV of 60◦ and a pixel resolution
of 3,304 × 2,336. Only one ground-truth segmentation map is
available for each image. For each category, five images are used
for training and the rest are used for testing.

Tongren
The Tongren clinical dataset contains 30 representative retinal
fundus images with a 45◦ FOV and a resolution of 1,888 × 2,816
pixels, within which 20 images were normal and 10 images
were of moderate cataract or retinal diseases including glaucoma,
age-related macular degeneration, and retinal vein occlusion.
An approval was obtained from the Ethics Committee of
Beijing Tongren Hospital. The ocular fundus had been taken
with a fundus camera (CR6-45NM camera, Canon Inc., Ota,
Tokyo, Japan). These images were labeled by two experienced
ophthalmologists with the ITK-SNAP toolkit (Yushkevich et al.,
2006). For each category, half of the images are used for training,
and the rest are used for testing.

Kailuan
The Kailuan database contains 30 images which were collected
from participants of the community-based Kailuan Cohort Study
(Jiang et al., 2015). These images have different sizes. The
minimum, average, and maximum heights are 1,588, 1,902,
and 2,112. The minimum, average, and maximum widths
are 1,586, 1,901, and 2,112. We used 15 images for training
and the rest for testing. Also, these images were labeled
by experienced ophthalmologists with the ITK-SNAP toolkit
(Yushkevich et al., 2006).

The binary ground-truth segmentation maps for the DRIVE,
LES, and HRF images are publicly available. For the Tongren
and Kailuan images, we have manually created FOV masks using
methods similar to those of Soares et al. (2006), Figure 6 shows
samples of Tongren and Kailuan datasets.

Evaluation Metrics
The retinal vessel segmentation outcomes of the proposed
method were compared against those of other reference methods
using several metrics, namely, sensitivity (SE), specificity (SP),
accuracy (ACC), the area under the ROC curve (AUC),
and the F1 score (F1). The binary segmentation maps were
generated through thresholding the probability maps with
a 0.5 threshold.

For A/V classification, five performance evaluation metrics
were adopted. We interpret arteries as positives and veins as
negatives. The A/V sensitivity (SEAV ) and specificity (SPAV )
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FIGURE 6 | Sample images and vessel visualization maps for the Tongren (left) and Kailuan (right) image databases.

reflect the model capability for correctly detecting arteries and
veins, respectively. The balance accuracy (BACC) quantifies the
overall performance of the model. These metrics are defined as
follows.

SEAV =
TP

TP+ FN

SPAV =
TN

TN+ FP

BACC =
SEAV + SPAV

2

Where TP is the count of the correctly classified artery pixels, TN
is the count of the correctly classified vein pixels, FP is the count

of the vein pixels misclassified as artery pixels, and FN is the count
of the artery pixels misclassified as vein pixels.

In addition, we compute the F1 score for arteries (F1A)
and the F1 score for veins (F1V ) when arteries and veins
represent the relevant samples, respectively. The optimal value
for each of these metrics is 1. Computations were restricted to
pixels within the FOV.

Network Training Details
Few training samples are available in each of the five databases
and are hence insufficient for handling model complexity. To
alleviate this problem, several data augmentation strategies (Fraz
et al., 2012b; Maninis et al., 2016; Feng et al., 2017; Oliveira
et al., 2018; Guo et al., 2019) have been explored, including
image scaling with different scale factors and image rotation
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by different angels. As no prior knowledge is available on the
appropriate patch size selection, patches with a size of 512 × 512
were randomly picked from the retinal images and used for
network training. For each test image, ordered patches were
collected, and the final segmentation and classification outcomes
were found by stitching together the associated patch predictions.
A stochastic gradient descent algorithm with momentum was
employed for optimizing model parameters with a maximum of
4,000 iterations. The learning rate was initially set to 0.001 and
then cut in half every 1,500 iterations. Method implementations
were carried out using a PyTorch backend the NVIDIA CUDA R©

Deep Neural Network library (cuDNN 9.0), and an Intel R© Xeon R©

Gold 6148 CPU with a processor of 2.40 GHz, a RAM of 256 GB,
and an Ubuntu 16.04 operating system.

RESULTS

In this section, we introduce the results of the experiment. Firstly,
we conduct a series of ablation studies to systematically analyze
the effectiveness of each component of the proposed network and
its impacts on overall segmentation performance. Then, we apply
our method to the aforementioned datasets and compare it with
state-of-the-art methods. Finally, we verify the effectiveness of the
DF strategy to address the challenges in new datasets.

Ablation Studies
Detailed ablation studies have been conducted to evaluate
the contribution of each module of the proposed VC-Net
architecture. These modules include the basic U-Net module, the
MSF in the encoder, and the VC module for A/V classification. In
Table 2, the first two methods apply direct recognition of retinal
fundus images into background, artery, vein, and undecided
pixels. Based on the recognition results, vessel segmentation
indicators are calculated. The proposed method was used
for vessel segmentation and A/V classification simultaneously;
performance indices were calculated accordingly.

As shown in Table 2, the A/V classification results have been
significantly improved with the addition of MSF. The MSF can
extract and express the vessel features with different scales in
the encoder to solve the varying diameters of the main vessels
and microvessels. Remarkably, the blood vessel classification
performance has been further improved to a certain extent by
using the VC module; our results show that we achieved 0.9483,
0.9327, 0.9547, 0.7428, and 0.7880 on BACC, SEAV , SPAV , F1A,

TABLE 2 | Results of the ablation study for A/V classification (α = 1.0).

Methods A/V classification

U-Net MSF VC BACC SEAV SPAV F1A F1V

� × × 0.9118 0.8950 0.9287 0.7089 0.7586

� � × 0.9481 0.9251 0.9711 0.7433 0.7861

� × � 0.9483 0.9327 0.9547 0.7428 0.7880

� � � 0.9542 0.9351 0.9732 0.7605 0.7971

and F1V , respectively. The VC module can suppress background-
prone features to pay more attention to vessel features; it
alleviates well the problem of positive and negative sample
imbalance and helps us learn more discriminative A/V features.
At the same time, the VC module can enhance the feature
representation of microvessels and the edge of thick vessels. More
importantly, from Table 2, we can see that the combination of
U-Net, MSF, and VC modules achieves the best results with a
BACC of 0.9542, SEAV of 0.9351, SPAV of 0.9732, F1A of 0.7605,
and F1V of 0.7971. Therefore, the ablation study demonstrates
the effectiveness of the proposed modules.

As shown in Figure 7, we visualized the A/V classification
results for different modules of the proposed VC-Net
architecture. In particular, results for four regions of interest were
highlighted and magnified. We can see that A/V classification
results of the U-Net are poor, where arteries and veins are
seriously confused, and that there are many misclassifications
at the edges and ends of blood vessels. With the introduction of
MSF, the A/V classification results have been improved, but there
is still the problem of arteries and veins being confused near
the crossing and branching points of blood vessels. Obviously,
in comparison with other models, we proposed the VC-Net
as it achieves better A/V classification results both locally and
globally. The above analysis proves that our model certainly
improves the overall A/V classification performance.

As we can see, the VC-Net model outperformed other
methods based on performance metrics and visualization results.
In addition, we also explored the influence of varying the α

parameter values on the VC-Net model performance. Specifically,
we trained the model from scratch with different α values, ranging
from 0.4 to 1.6. The results are shown in Table 3. For A/V
classification, the BACC, SEAV , F1A, and F1V metrics increased
with the decrease in α. Nevertheless, the increase between α = 0.4
and α = 0.6 was very small, and there was even a small decrease
in F1A and F1V . For vessel segmentation, α approaches 1.0–1.4,
and the indicators show good performance. Therefore, the α value
should be adjusted according to different scenarios. If a larger
SEAV value is desired, the α value can be appropriately reduced
to train a model from scratch.

After training the VC-Net model, we varied the α values in the
trained model to test the model performance on the test dataset.
The results are shown in Table 4. Obviously, with the decrease
of α, most indicators are increased except SE, F1, and F1V . As
a bonus and as SE is increased with α, the effectiveness of the
VC model is verified from the side. When a model has been
trained, if a larger indicator for A/V classification is needed, α

can be appropriately reduced. And if a lager SE is needed, α can
be appropriately increased.

Comparison With Existing Methods on
the DRIVE Dataset
We compared the VC-Net performance with that of other state-
of-the-art methods on the DRIVE dataset for vessel segmentation
and A/V classification tasks. Table 5 summarizes the vessel
segmentation comparison results. As seen, the proposed VC-
Net shows superior segmentation performance in terms of AUC
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FIGURE 7 | Retinal fundus images and vessel maps for different modules. Four regions of interest are highlighted and magnified in rows 2–5.

TABLE 3 | The effect of α on vessel segmentation and classification training (VC-Net model training from scratch).

α Segmentations A/V classification

ACC SE SP AUC F1 BACC SEAV SPAV F1A F1V

0.4 0.9566 0.8302 0.9755 0.9799 0.8290 0.9570 0.9405 0.9735 0.7633 0.7988

0.6 0.9565 0.8311 0.9752 0.9801 0.8287 0.9568 0.9397 0.9740 0.7634 0.7989

0.8 0.9565 0.8305 0.9753 0.9803 0.8286 0.9563 0.9385 0.9740 0.7622 0.7985

1.0 0.9570 0.8258 0.9766 0.9812 0.8296 0.9542 0.9351 0.9732 0.7605 0.7971

1.2 0.9568 0.8288 0.9759 0.9804 0.8294 0.9535 0.9357 0.9714 0.7616 0.7954

1.4 0.9557 0.8475 0.9720 0.9814 0.8290 0.9540 0.9352 0.9728 0.7607 0.7963

1.6 0.9565 0.8261 0.9763 0.9811 0.8289 0.9564 0.9354 0.9773 0.7595 0.7963

and F1. In Table 6, the existing methods are evaluated for
the classification performance on the segmented vessels only.
On the contrary, we evaluated the VC-Net performance on all
A/V ground-truth pixels. This evaluation is more challenging
than that on the segmented vessels, since the identification of
major vessels is an easier task if the capillary vessels are not

segmented. The comparison with existing methods under the
same criteria shows superior performance of our model, which
achieves a BACC of 0.9554, SEAV of 0.9360, SPAV of 0.9748, F1A
of 0.7616, and F1V of 0.7964. Indeed, our model surpasses the
current best A/V classification method due to the introduction
of the VC module.
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TABLE 4 | The effect of α on vessel segmentation and classification testing (the VC-Net model has been trained).

α Segmentations A/V classification

ACC SE SP F1 BACC SEAV SPAV F1A F1V

0.4 0.9574 0.7848 0.9830 0.8236 0.9554 0.9360 0.9748 0.7616 0.7964

0.6 0.9575 0.8015 0.9807 0.8270 0.9549 0.9356 0.9742 0.7615 0.7968

0.8 0.9573 0.8148 0.9786 0.8287 0.9545 0.9354 0.9737 0.7612 0.7970

1.0 0.9570 0.8258 0.9766 0.8296 0.9542 0.9351 0.9732 0.7605 0.7971

1.2 0.9566 0.8351 0.9748 0.8299 0.9539 0.9349 0.9729 0.7599 0.7973

1.4 0.9562 0.8429 0.9732 0.8298 0.9536 0.9348 0.9725 0.7587 0.7970

1.6 0.9557 0.8496 0.9716 0.8293 0.9535 0.9346 0.9723 0.7573 0.7966

TABLE 5 | Vessel segmentation results of vessel-constraint network (VC-Net) and other existing methods on the DRIVE dataset.

Methods ACC SE SP AUC F1

U-Net (Ronneberger et al., 2015) 0.9541 0.8319 0.9713 0.9750 0.8162

DDNet (Mou et al., 2019a) 0.9594 0.8126 0.9788 0.9796 N/A

AC_Net (Ma et al., 2019) 0.9570 0.7916 0.9811 0.9810 N/A

CS-Net (Mou et al., 2019b) 0.9632 0.8170 0.9854 0.9798 N/A

CE-Net (Gu et al., 2019) 0.9545 0.8309 0.9747 0.9779 N/A

RU-Net (Alom et al., 2018) 0.9556 0.7792 0.9813 0.9784 0.8171

BTS-UNet (Guo et al., 2019) 0.9551 0.7800 0.9806 0.9796 0.8208

DE-UNet (Wang et al., 2019) 0.9567 0.7940 0.9816 0.9772 0.8270

VC-Net (α = 1) 0.9570 0.8258 0.9766 0.9812 0.8296

N/A, not available.

TABLE 6 | Artery/vein (A/V) classification results of VC-Net and other existing
methods on the DRIVE dataset.

Methods BACC SEAV SPAV F1A F1V

Dashtbozorg et al.,
2014

0.8740 0.9000 0.8400 N/A N/A

Estrada et al., 2015 0.9350 0.9300 0.9410 N/A N/A

U-Net
(Ronneberger et al.,
2015)

0.9122 0.9145 0.9083 0.7089 0.7586

Xu et al., 2017 0.9230 0.9290 0.9150 N/A N/A

DOS (Zhao et al.,
2018)

N/A 0.9190 0.9150 N/A N/A

AC_Net (Ma et al.,
2019)

0.9450 0.9340 0.9550 N/A N/A

VC-Net (α = 1) 0.9542 0.9351 0.9732 0.7605 0.7971

VC-Net (α = 0.4) 0.9554 0.9360 0.9748 0.7616 0.7964

In particular, for Table 6, it is noteworthy that VC-Net
has outperformed existing methods in terms of all metrics in
identifying arteries and veins. This performance superiority is
mainly due to the fact that the vessel activation map not only
enhanced the vascular boundaries and microvessels but also
strengthened the main thick vessels, suppressed the background,
and hence enabled the model to learn more vessel features.
Besides, the vessel activation map eliminated the imbalance
between the background and the blood vessel samples to
a certain extent.

Comparison With Existing Methods on
Other Datasets
The proposed VC-Net was also compared with existing methods
on two other public datasets and two collected datasets. For vessel
segmentation, the results on the LES and HRF public datasets are
shown in Table 7. Clearly, VC-Net achieved significantly better

TABLE 7 | Performance comparison for different vessel segmentation methods on
the LES and HRF datasets.

Datasets Methods Vessel segmentation

ACC SE SP AUC F1

LES FC-CRF (Orlando
et al., 2017)

N/A 0.7874 0.9584 0.9359 0.7158

Jloss (Yan et al.,
2018)

0.9400 0.7900 0.9600 N/A N/A

VC-Net (α = 1) 0.9722 0.8504 0.9840 0.9821 0.8417
HRF DNN (Samuel and

Veeramalai, 2019)
0.8531 0.8655 0.8523 0.9665 N/A

UA_VA (Galdran
et al., 2019)

0.9100 0.8500 0.9100 0.9400 0.6200

MF-Net (Odstrcilik
et al., 2013)

0.9494 0.7741 0.9669 0.9670 0.7316

FCN-TL (Jiang
et al., 2018)

0.9662 0.7686 0.9826 0.9770 N/A

VC-Net (α = 1) 0.9663 0.7903 0.9843 0.9806 0.8101
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TABLE 8 | Performance comparison of different A/V classification methods on the
LES and HRF datasets.

Datasets Methods A/V classification

BACC SEAV SPAV F1A F1V

LES UA_VA
(Galdran et al.,

2019)

0.8600 0.8800 0.8500 N/A N/A

VC-Net (α = 1) 0.9446 0.9425 0.9467 0.7635 0.7988

HRF VC-Net (α = 1) 0.9646 0.9588 0.9704 0.7389 0.7839

results with an ACC of 0.9663, SP of 0.9843, AUC of 0.9806, and
F1 of 0.8101 in the HRF-AV dataset.

The A/V classification outcomes are shown in Table 8. It
can be seen that all indicators have been significantly improved
compared to those in UA_VA (Galdran et al., 2019) on the
LES dataset. In particular, the BACC, SEAV , and SPAV metrics
increased by 9.84, 7.10, and 11.38%, respectively. Moreover, the
VC-Net also showed excellent performance on the HRF dataset

with a BACC of 0.9646. The above results once again demonstrate
the excellent performance of VC-Net.

In addition, we tested the VC-Net performance for blood
vessel segmentation and A/V classification on the two collected
Tongren and Kailuan datasets. The results are shown in Table 9.
For the Tongren dataset, there were significant improvements
compared with the previous methods. Specifically, the ACC,
BACC, F1A, and F1V metrics for VC-Net were improved by 0.39,
4.41, 6.43, and 7.44%, respectively, in comparison with the basic
U-Net method. And the VC-Net achieved better results with an
SP of 0.9767, F1 of 0.7974, F1A of 0.7221, and F1V of 0.7741 on the
Kailuan dataset. The experimental results demonstrate that our
method achieves competitive performance for A/V classification
and vessel segmentation.

Segmentation Results of Challenging
Images
Sample images from the above-mentioned five databases and
the corresponding predicted and ground-truth vessel maps are

TABLE 9 | Vessel segmentation and A/V classification performance of different methods on the Tongren and Kailuan datasets (α = 1).

Datasets Methods Segmentations A/V classification

ACC SE SP AUC F1 BACC SEAV SPAV F1A F1V

Tongren U-Net (Ronneberger et al., 2015) 0.9637 0.8283 0.9752 0.9813 0.7798 0.9068 0.9138 0.9018 0.6903 0.7208

S-UNet (Hu et al., 2019) 0.9652 0.7822 0.9830 0.9824 0.7994 N/A N/A N/A N/A N/A

VC-Net 0.9675 0.7705 0.9863 0.9819 0.8048 0.9468 0.9421 0.9516 0.7347 0.7744

Kailuan VC-Net 0.9516 0.7961 0.9767 0.9766 0.7974 0.9442 0.9413 0.9472 0.7221 0.7741

FIGURE 8 | Predicted and ground-truth vessel maps for sample images from five retinal fundus image databases.
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TABLE 10 | The model is trained under the selected training dataset and tested
under the Kailuan dataset with multiscale.

Training datasets A/V classification

DRIVE LES HRF BACC SEAV SPAV F1A F1V

� × × 0.6086 0.4721 0.7451 0.2052 0.2870

× � × 0.8776 0.8942 0.8610 0.6273 0.6803

× × � 0.9251 0.8876 0.9626 0.6504 0.7375

� � � 0.9412 0.9297 0.9562 0.6790 0.7449

shown in Figure 8. Accurate segmentation of challenging images
proves the effectiveness of our method. For the DRIVE and HRF
datasets, both the overall and local vessel segmentation and A/V
classification results are excellent with considerable continuity.
Good results were achieved also on the other datasets, although
the local results are not as well as those of the DRIVE and
HRF datasets. Due to computational limitations, only patch-level
networks can be trained on large-scale datasets, and hence, the
results can be inferior to whole-image networks.

Evaluation Results on Unseen Datasets
With Multiscale DF
Data fusion is a fundamental step to deal with the new data
problem. To improve the robustness of the proposed model,
DF from datasets with different scales could enrich the amount
of training data and data distribution and could be validated
on a new dataset with multiscale. We define this training
strategy as DF training.

The first three rows of Table 10 were only trained on
the DRIVE, LES, or HRF datasets and tested on the Kailuan
dataset. Finally, the three datasets combined and shuffled the
images. The fused data are used as the training dataset and
tested under the Kailuan dataset. It can be seen that the best
results have been achieved on most indicators on the Kailuan
dataset after DF. As a bonus, the DF training can enhance the
robustness of the model, and it is more suitable for testing
on new datasets.

DISCUSSION AND CONCLUSION

In this paper, we propose a VC network that utilizes information
of vessel distribution and edge to enhance A/V classification.
The proposed VC module combines local and global vessel
information to generate a more reasonable weight map to
constrain the A/V features, which suppresses the background-
prone features and enhances the edge and end features
of blood vessels. Meanwhile, we used an MSF module to
obtain multiscale vessel features, such as the main thick
vessels, vascular boundaries, and microvascular regions. Our
method achieves better blood vessel segmentation and A/V
classification performance. More importantly, we adopt the DF
strategy to improve the robustness and generalization ability of
the proposed model.

The VC-Net model demonstrates the effectiveness
on multiscale and multicenter datasets. It outperforms

existing methods and achieves state-of-the-art results for
A/V classification and vessel segmentation on three public
datasets. And the proposed model was tested on multicenter
datasets: Tongren and Kailuan; the results indicate the superior
generalization capability of the network. In addition, this model
shows better performance on datasets with different resolutions.
The visualized vessel maps reflect the importance of the MSF
extraction module in our model and the excellent overall
control of the global and detailed features by the VC module. In
particular, to promote the development of this field, we collected
two retinal fundus image datasets (Tongren and Kailuan), which
labeled the arteries and veins with the ITK-SNAP toolkit, and we
will be releasing the Tongren dataset.

One of the limitations of our work is that large-scale fundus
images cannot be accommodated by the network; such images
should be reduced to patches of a reasonable size to facilitate
the training and testing processes. This patch-based approach
distorts the global view of capillaries and large vessels. The
other limitation is that computational resources are highly
demanding. Therefore, we hope to use our work as a basis
to further analyze the performance of vessel segmentation and
A/V classification algorithms for large-scale fundus images and
improve the utilization of computational resources.

In the future, we will deploy our algorithm to mobile terminals
and develop an automatic retinal blood vessel analysis system,
which is more conducive to clinicians’ understanding and use of
this algorithm and promotes the diagnosis of ophthalmology and
systemic diseases.
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