82 research outputs found

    Effects of Normative Aging on Eye Movements during Reading

    Get PDF
    Substantial progress has been made in understanding the mostly detrimental effects of normative aging on eye movements during reading. This article provides a review of research on aging effects on eye movements during reading for different writing systems (i.e., alphabetic systems like English compared to non-alphabetic systems like Chinese), focused on appraising the importance of visual and cognitive factors, considering key methodological issues, and identifying vital questions that need to be addressed and topics for further investigation

    Fecal microbiota transplantation in a child with severe ASD comorbidities of gastrointestinal dysfunctions—a case report

    Get PDF
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder defined by social communication impairments and restricted, repetitive behaviors. In addition to behavioral interventions and psychotherapies, and pharmacological interventions, in-depth studies of intestinal microbiota in ASD has obvious abnormalities which may effectively influenced in ASD. Several attempts have been made to indicate that microbiota can reduce the occurrence of ASD effectively. Fecal microbiota transplantation (FMT) is a type of biological therapy that involves the transplant of intestinal microbiota from healthy donors into the patient’s gastrointestinal tract to improve the gut microenvironment. In this case report, we describe a case of child ASD treated by FMT. The patient have poor response to long-term behavioral interventions. After five rounds of FMT, clinical core symptoms of ASD and gastrointestinal(GI) symptoms were significantly altered. Moreover, the multiple levels of functional development of child were also significantly ameliorated. We found that FMT changed the composition of the intestinal microbiota as well as the metabolites, intestinal inflammatory manifestations, and these changes were consistent with the patient’s symptoms. This report suggests further FMT studies in ASD could be worth pursuing, and more studies are needed to validate the effectiveness of FMT in ASD and its mechanisms

    Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty

    Get PDF
    The Antarctic Ice Sheet represents the largest source of uncertainty in future sea level rise projections, with a contribution to sea level by 2100 ranging from −5 to 43 cm of sea level equivalent under high carbon emission scenarios estimated by the recent Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). ISMIP6 highlighted the different behaviors of the East and West Antarctic ice sheets, as well as the possible role of increased surface mass balance in offsetting the dynamic ice loss in response to changing oceanic conditions in ice shelf cavities. However, the detailed contribution of individual glaciers, as well as the partitioning of uncertainty associated with this ensemble, have not yet been investigated. Here, we analyze the ISMIP6 results for high carbon emission scenarios, focusing on key glaciers around the Antarctic Ice Sheet, and we quantify their projected dynamic mass loss, defined here as mass loss through increased ice discharge into the ocean in response to changing oceanic conditions. We highlight glaciers contributing the most to sea level rise, as well as their vulnerability to changes in oceanic conditions. We then investigate the different sources of uncertainty and their relative role in projections, for the entire continent and for key individual glaciers. We show that, in addition to Thwaites and Pine Island glaciers in West Antarctica, Totten and Moscow University glaciers in East Antarctica present comparable future dynamic mass loss and high sensitivity to ice shelf basal melt. The overall uncertainty in additional dynamic mass loss in response to changing oceanic conditions, compared to a scenario with constant oceanic conditions, is dominated by the choice of ice sheet model, accounting for 52 % of the total uncertainty of the Antarctic dynamic mass loss in 2100. Its relative role for the most dynamic glaciers varies between 14 % for MacAyeal and Whillans ice streams and 56 % for Pine Island Glacier at the end of the century. The uncertainty associated with the choice of climate model increases over time and reaches 13 % of the uncertainty by 2100 for the Antarctic Ice Sheet but varies between 4 % for Thwaites Glacier and 53 % for Whillans Ice Stream. The uncertainty associated with the ice–climate interaction, which captures different treatments of oceanic forcings such as the choice of melt parameterization, its calibration, and simulated ice shelf geometries, accounts for 22 % of the uncertainty at the ice sheet scale but reaches 36 % and 39 % for Institute Ice Stream and Thwaites Glacier, respectively, by 2100. Overall, this study helps inform future research by highlighting the sectors of the ice sheet most vulnerable to oceanic warming over the 21st century and by quantifying the main sources of uncertainty

    Disruption of Autographa Californica Multiple Nucleopolyhedrovirus ac111 Results in Reduced per os Infectivity in a Host-Dependent Manner

    No full text
    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac111 gene is highly conserved in lepidopteran-specific baculoviruses, and its function in the AcMNPV life cycle is still unknown. To investigate the function of ac111, an ac111-knockout AcMNPV (vAc111KO) was constructed through homologous recombination in Escherichia coli. Viral growth curve analysis and plaque assays showed that the deletion of ac111 had no effect on infectious budded virion production. Quantitative real-time polymerase chain reaction analysis confirmed that viral DNA replication was unaffected in the absence of ac111. Electron microscopy revealed that the ac111 deletion did not affect nucleocapsid assembly, occlusion-derived virion formation, or the embedding of occlusion-derived virions into the occlusion bodies. However, in vivo bioassays showed that although the deletion of ac111 did not affect the per os infectivity of AcMNPV in Spodoptera exigua larvae, it led to an approximately five-fold reduction in infectivity of AcMNPV in Trichoplusia ni larvae, and vAc111KO took approximately 21 h longer to kill Trichoplusia ni larvae than the wild-type viruses. Taken together, our results demonstrated that although ac111 is not essential for virus replication in vitro, it plays an important role in the per os infectivity of AcMNPV in a host-dependent manner

    Semantic plausibility preferentially affects the semantic preview benefit in Chinese reading: evidence from an eye-movement study

    No full text
    Background Numerous studies have confirmed that skilled readers can benefit from a semantically related preview word (i.e., semantic preview benefit, SPB), suggesting that readers can extract semantic information from the parafovea to achieve efficient reading. It is still under debate whether the occurrence of this benefit is because of the semantic association between the preview and target words or because of the contextual fit of the preview word in the sentence context. Methods Two independent factors, preview plausibility (preview plausible/implausible) and semantic relatedness (semantically related/unrelated), were manipulated, and we further strictly controlled for syntactic plausibility in the present study. Results The results showed that the first-pass reading times of the target words were significantly shorter in the plausible preview condition than in the implausible preview condition. However, the main effect of semantic relatedness was found only in the gaze duration measure. Discussion The pattern of results revealed that semantic plausibility affects the semantic preview benefit preferentially in Chinese reading, supporting the contextual fit account. Our findings have implications for a better understanding of parafoveal processing and provide empirical support for the eye-movement control model

    Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    No full text
    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed
    corecore