659 research outputs found

    DragonNet: a robust mobile internet services system for long distance trains

    Get PDF
    Wide range wireless networks often suffer from annoying service deterioration due to ever-changing wireless environments. This is especially the case with passengers on long-distance trains (LDT, such as intercity, interprovincial, and international commuter trains) connecting to the Internet. To improve the service quality of wide-area wireless networks, we present the DragonNet system and protocol with practical implementations. The DragonNet system is a chained gateway that consists of a group of interlinked DragonNet routers running the DragonNet protocol for node failure amortization across the long stretching router chain. The protocol makes use of the spatial diversity of wireless signals when not all spots on a surface see the same level of radio frequency radiation. In the case of an LDT of around 500 meters, it is highly possible that some of the DragonNet routers in the gateway chain still see sound signal quality when the LDT is partially blocked from the wireless Internet. The DragonNet protocol fully utilizes this feature to amortize single-point router failure over the whole router chain by intelligently rerouting traffic on failed ones to sound ones. We have implemented the DragonNet system and tested it in real railways over a period of three months. Our results have pinpointed two fundamental contributions of the DragonNet protocol. First, DragonNet significantly reduces the average temporary communication blackout (i.e., no Internet connection) to 1.5 seconds compared with 6 seconds without the DragonNet protocol. Second, DragonNet nearly doubles the aggregate system throughput compared with gateway without running the DragonNet protocol

    Analytical results on quantum interference and magnetoconductance for strongly localized electrons in a magnetic field: Exact summation of forward-scattering paths

    Get PDF
    We study quantum interference effects on the transition strength for strongly localized electrons hopping on 2D square and 3D cubic lattices in the presence of a magnetic field B. These effects arise from the interference between phase factors associated with different electron paths connecting two distinct sites. For electrons confined on a square lattice, with and without disorder, we obtain closed-form expressions for the tunneling probability, which determines the conductivity, between two arbitrary sites by exactly summing the corresponding phase factors of all forward-scattering paths connecting them. An analytic field-dependent expression, valid in any dimension, for the magnetoconductance (MC) is derived. A positive MC is clearly observed when turning on the magnetic field. In 2D, when the strength of B reaches a certain value, which is inversely proportional to twice the hopping length, the MC is increased by a factor of two compared to that at zero field. We also investigate transport on the much less-studied and experimentally important 3D cubic lattice case, where it is shown how the interference patterns and the small-field behavior of the MC vary according to the orientation of B. The effect on the low-flux MC due to the randomness of the angles between the hopping direction and the orientation of B is also examined analytically.Comment: 24 pages, RevTeX, 8 figures include

    Deactivation study of the hydrodeoxygenation of p-methylguaiacol over silica supported rhodium and platinum catalysts

    Get PDF
    Hydrodeoxygenation of para-methylguaiacol using silica supported Rh or Pt catalysts was investigated using a fixed-bed reactor at 300 °C, under 4 barg hydrogen and a WHSV of 2.5 h−1. The activity, selectivity and deactivation of the catalysts were examined in relation to time on stream. Three catalysts were tested: 2.5% Rh/silica supplied by Johnson Matthey (JM), 2.5% Rh/silica and 1.55% Pt/silica both prepared in-house. The Rh/silica (JM) showed the best stability with steady-state reached after 6 h on stream and a constant activity over 3 days of reaction. In contrast the other two catalysts did not reach steady state within the timeframe of the tests, with continuous deactivation over the time on stream. Nevertheless higher coking was observed on the Rh/silica (JM) catalyst, while all three catalysts showed evidence of sintering. The Pt catalyst (A) showed higher selectivity for the production of 4-methylcatechol while the Rh catalysts were more selective toward the cresols. In all cases, complete hydrodeoxygenation of the methylguaiacol to methylcyclohexane was not observed

    First Principles Calculations of Fe on GaAs (100)

    Full text link
    We have calculated from first principles the electronic structure of 0.5 monolayer upto 5 monolayer thick Fe layers on top of a GaAs (100) surface. We find the Fe magnetic moment to be determined by the Fe-As distance. As segregates to the top of the Fe film, whereas Ga most likely is found within the Fe film. Moreover, we find an asymmetric in-plane contraction of our unit-cell along with an expansion perpendicular to the surface. We predict the number of Fe 3d-holes to increase with increasing Fe thickness on pp-doped GaAs.Comment: 9 pages, 14 figures, submitted to PR

    The Alignment Between 3-D Data and Articulated Shapes with Bending Surfaces

    Get PDF
    International audienceIn this paper we address the problem of aligning 3-D data with articulated shapes. This problem resides at the core of many motion tracking methods with applications in human motion capture, action recognition, medical-image analysis, etc. We describe an articulated and bending surface representation well suited for this task as well as a method which aligns (or registers) such a surface to 3-D data. Articulated objects, e.g., humans and animals, are covered with clothes and skin which may be seen as textured surfaces. These surfaces are both articulated and deformable and one realistic way to model them is to assume that they bend in the neighborhood of the shape's joints. We will introduce a surface-bending model as a function of the articulated-motion parameters. This combined articulated-motion and surface-bending model better predicts the observed phenomena in the data and therefore is well suited for surface registration. Given a set of sparse 3-D data (gathered with a stereo camera pair) and a textured, articulated, and bending surface, we describe a register-and-fit method that proceeds as follows. First, the data-to-surface registration problem is formalized as a classifier and is carried out using an EM algorithm. Second, the data-to-surface fitting problem is carried out by minimizing the distance from the registered data points to the surface over the joint variables. In order to illustrate the method we applied it to the problem of hand tracking. A hand model with 27 degrees of freedom is successfully registered and fitted to a sequence of 3-D data points gathered with a stereo camera pair

    Policy Brief: UNSCR 1325: The Challenges of Framing Women’s Rights as a Security Matter

    Get PDF
    While UN Security Council Resolution (UNSCR) 1325 has certainly increased awareness among international actors about women’s and gender issues in armed conflict, opened new spaces for dialogue and partnerships from global to local levels, and even created opportunities for new resources for women’s rights, successes remain limited and notably inconsistent. To understand some of these shortcomings and think creatively about how to move the women, peace and security agenda forward, it is essential to understand the conceptual assumptions underscoring UNSCR 1325

    Interaction between Tachyon and Hessence (or Hantom) dark energies

    Full text link
    In this paper, we have considered that the universe is filled with tachyon, hessence (or hantom) dark energies. Subsequently we have investigated the interactions between tachyon and hessence (hantom) dark energies and calculated the potentials considering the power law form of the scale factor. It has been revealed that the tachyonic potential always decreases and hessence (or hantom) potential increases with corresponding fields. Furthermore, we have considered a correspondence between the hessence (or hantom) dark energy density and new variable modified Chaplygin gas energy density. From this, we have found the expressions of the arbitrary positive constants B0 and C of new variable modified Chaplygin gas

    Radio Location of Partial Discharge Sources: A Support Vector Regression Approach

    Get PDF
    Partial discharge (PD) can provide a useful forewarning of asset failure in electricity substations. A significant proportion of assets are susceptible to PD due to incipient weakness in their dielectrics. This paper examines a low cost approach for uninterrupted monitoring of PD using a network of inexpensive radio sensors to sample the spatial patterns of PD received signal strength. Machine learning techniques are proposed for localisation of PD sources. Specifically, two models based on Support Vector Machines (SVMs) are developed: Support Vector Regression (SVR) and Least-Squares Support Vector Regression (LSSVR). These models construct an explicit regression surface in a high dimensional feature space for function estimation. Their performance is compared to that of artificial neural network (ANN) models. The results show that both SVR and LSSVR methods are superior to ANNs in accuracy. LSSVR approach is particularly recommended as practical alternative for PD source localisation due to it low complexity

    Multi-scale waves in sound-proof global simulations with EULAG

    Get PDF
    EULAG is a computational model for simulating flows across a wide range of scales and physical scenarios. A standard option employs an anelastic approximation to capture nonhydrostatic effects and simultaneously filter sound waves from the solution. In this study, we examine a localized gravity wave packet generated by instabilities in Held-Suarez climates. Although still simplified versus the Earth’s atmosphere, a rich set of planetary wave instabilities and ensuing radiated gravity waves can arise. Wave packets are observed that have lifetimes ≤ 2 days, are negligibly impacted by Coriolis force, and do not show the rotational effects of differential jet advection typical of inertia-gravity waves. Linear modal analysis shows that wavelength, period, and phase speed fit the dispersion equation to within a mean difference of ∼ 4%, suggesting an excellent fit. However, the group velocities match poorly even though a propagation of uncertainty analysis indicates that they should be predicted as well as the phase velocities. Theoretical arguments suggest the discrepancy is due to nonlinearity — a strong southerly flow leads to a critical surface forming to the southwest of the wave packet that prevents the expected propagation

    Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments

    Get PDF
    Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
    corecore