824 research outputs found
Spectral properties of a narrow-band Anderson model
We consider single-particle spectra of a symmetric narrow-band Anderson
impurity model, where the host bandwidth is small compared to the
hybridization strength . Simple 2nd order perturbation theory (2PT)
in is found to produce a rich spectral structure, that leads to rather good
agreement with extant Lanczos results and offers a transparent picture of the
underlying physics. It also leads naturally to two distinct regimes of spectral
behaviour, and (with the quasi-particle
weight), whose existence and essential characteristics are discussed and shown
to be independent of 2PT itself. The self-energy is also
examined beyond the confines of PT. It is argued that on frequency scales of
order , the self-energy in {\em strong} coupling
is given precisely by the 2PT result, and we point out that the resultant poles
in connect continuously to that characteristic of the atomic
limit. This in turn offers a natural rationale for the known inability of the
skeleton expansion to capture such behaviour, and points to the intrinsic
dangers of partial infinite-order summations that are based on PT in .Comment: 10 pages, 2 Postscript figures, uses RevTex 3.1; accepted for
publication in Phys. Rev. B1
Density of states near the Mott-Hubbard transition in the limit of large dimensions
The zero temperature Mott-Hubbard transition as a function of the Coulomb
repulsion U is investigated in the limit of large dimensions. The behavior of
the density of states near the transition at U=U_c is analyzed in all orders of
the skeleton expansion. It is shown that only two transition scenarios are
consistent with the skeleton expansion for U<U_c: (i) The Mott-Hubbard
transition is "discontinuous" in the sense that in the density of states finite
spectral weight is redistributed at U_c. (ii) The transition occurs via a point
at U=U_c where the system is neither a Fermi liquid nor an insulator.Comment: 4 pages, 1 figure; revised version accepted for publication in Phys.
Rev. Let
Examination of optimized protocols for pCASL: Sensitivity to macrovascular contamination, flow dispersion, and prolonged arterial transit time
PurposePreviously, multi- post-labeling delays (PLD) pseudo-continuous arterial spin labeling (pCASL) protocols have been optimized for the estimation accuracy of the cerebral blood flow (CBF) with/without the arterial transit time (ATT) under a standard kinetic model and a normal ATT range. This study aims to examine the estimation errors of these protocols under the effects of macrovascular contamination, flow dispersion, and prolonged arrival times, all of which might differ substantially in elderly or pathological groups.MethodsSimulated data for four protocols with varying degrees of arterial blood volume (aBV), flow dispersion, and ATTs were fitted with different kinetic models, both with and without explicit correction for macrovascular signal contamination (MVC), to obtain CBF and ATT estimates. Sensitivity to MVC was defined and calculated when aBV > 0.5%. A previously acquired dataset was retrospectively analyzed to compare with simulation.ResultsAll protocols showed underestimation of CBF and ATT in the prolonged ATT range. With MVC, the protocol optimized for CBF only (CBFopt) had the lowest sensitivity value to MVC, 33.47% and 60.21% error per 1% aBV in simulation and in vivo, respectively, among multi-PLD protocols. All multi-PLD protocols showed a significant decrease in estimation error when an extended kinetic model was used. Increasing flow dispersion at short ATTs caused increasing CBF and ATT overestimation in all protocols.ConclusionCBFopt was the least sensitive protocol to prolonged ATT and MVC for CBF estimation while maintaining reasonably good performance in estimating ATT. Explicitly including a macrovascular component in the kinetic model was shown to be a feasible approach in controlling for MVC
Symmetric Anderson impurity model with a narrow band
The single channel Anderson impurity model is a standard model for the
description of magnetic impurities in metallic systems. Usually, the bandwidth
represents the largest energy scale of the problem. In this paper, we analyze
the limit of a narrow band, which is relevant for the Mott-Hubbard transition
in infinite dimensions. For the symmetric model we discuss two different
effects: i) The impurity contribution to the density of states at the Fermi
surface always turns out to be negative in such systems. This leads to a new
crossover in the thermodynamic quantities that we investigate using the
numerical renormalization group. ii) Using the Lanczos method, we calculate the
impurity spectral function and demonstrate the breakdown of the skeleton
expansion on an intermediate energy scale. Luttinger's theorem, as an example
of the local Fermi liquid property of the model, is shown to still be valid.Comment: 4 pages RevTeX, 2 eps figures included, final versio
Zero temperature metal-insulator transition in the infinite-dimensional Hubbard model
The zero temperature transition from a paramagnetic metal to a paramagnetic
insulator is investigated in the Dynamical Mean Field Theory for the Hubbard
model. The self-energy of the effective impurity Anderson model (on which the
Hubbard model is mapped) is calculated using Wilson's Numerical Renormalization
Group method. Results for quasiparticle weight, spectral function and
self-energy are discussed for Bethe and hypercubic lattice. In both cases, the
metal-insulator transition is found to occur via the vanishing of a
quasiparticle resonance which appears to be isolated from the Hubbard bands.Comment: 4 pages, 3 eps-figures include
Quantitative Analysis and Comparison Study of [18F]AlF-NOTA-PRGD2, [18F]FPPRGD2 and [68Ga]Ga-NOTA-PRGD2 Using a Reference Tissue Model
With favorable pharmacokinetics and binding affinity for αvβ3 integrin, 18F-labeled dimeric cyclic RGD peptide ([18F]FPPRGD2) has been intensively used as a PET imaging probe for lesion detection and therapy response monitoring. A recently introduced kit formulation method, which uses an 18F-fluoride-aluminum complex labeled RGD tracer ([18F]AlF-NOTA-PRGD2), provides a strategy for simplifying the labeling procedure to facilitate clinical translation. Meanwhile, an easy-to-prepare 68Ga-labeled NOTA-PRGD2 has also been reported to have promising properties for imaging integrin αvβ3. The purpose of this study is to quantitatively compare the pharmacokinetic parameters of [18F]FPPRGD2, [18F]AlF-NOTA-PRGD2, and [68Ga]Ga-NOTA-PRGD2. U87MG tumor-bearing mice underwent 60-min dynamic PET scans following the injection of three tracers. Kinetic parameters were calculated using Logan graphical analysis with reference tissue. Parametric maps were generated using voxel-level modeling. All three compounds showed high binding potential (BpND = k3/k4) in tumor voxels. [18F]AlF-NOTA-PRGD2 showed comparable BpND value (3.75±0.65) with those of [18F]FPPRGD2 (3.39±0.84) and [68Ga]Ga-NOTA-PRGD2 (3.09±0.21) (p>0.05). Little difference was found in volume of distribution (VT) among these three RGD tracers in tumor, liver and muscle. Parametric maps showed similar kinetic parameters for all three tracers. We also demonstrated that the impact of non-specific binding could be eliminated in the kinetic analysis. Consequently, kinetic parameter estimation showed more comparable results among groups than static image analysis. In conclusion, [18F]AlF-NOTA-PRGD2 and [68Ga]Ga-NOTA-PRGD2 have comparable pharmacokinetics and quantitative parameters compared to those of [18F]FPPRGD2. Despite the apparent difference in tumor uptake (%ID/g determined from static images) and clearance pattern, the actual specific binding component extrapolated from kinetic modeling appears to be comparable for all three dimeric RGD tracers
Density-matrix renormalisation group approach to quantum impurity problems
A dynamic density-matrix renormalisation group approach to the spectral
properties of quantum impurity problems is presented. The method is
demonstrated on the spectral density of the flat-band symmetric single-impurity
Anderson model. We show that this approach provides the impurity spectral
density for all frequencies and coupling strengths. In particular, Hubbard
satellites at high energy can be obtained with a good resolution. The main
difficulties are the necessary discretisation of the host band hybridised with
the impurity and the resolution of sharp spectral features such as the
Abrikosov-Suhl resonance.Comment: 16 pages, 6 figures, submitted to Journal of Physics: Condensed
Matte
Axin1 Prevents Salmonella Invasiveness and Inflammatory Response in Intestinal Epithelial Cells
Axin1 and its homolog Axin2 are scaffold proteins essential for regulating Wnt signaling. Axin-dependent regulation of Wnt is important for various developmental processes and human diseases. However, the involvement of Axin1 and Axin2 in host defense and inflammation remains to be determined.Here, we report that Axin1, but not Axin2, plays an essential role in host-pathogen interaction mediated by the Wnt pathway. Pathogenic Salmonella colonization greatly reduces the level of Axin1 in intestinal epithelial cells. This reduction is regulated at the posttranslational level in early onset of the bacterial infection. Further analysis reveals that the DIX domain and Ser614 of Axin1 are necessary for the Salmonella-mediated modulation through ubiquitination and SUMOylation.Axin1 apparently has a preventive effect on bacterial invasiveness and inflammatory response during the early stages of infection. The results suggest a distinct biological function of Axin1 and Axin2 in infectious disease and intestinal inflammation while they are functionally equivalent in developmental settings
WNT signalling in prostate cancer
Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer
Ceramic Microbial Fuel Cells Stack: Power generation in standard and supercapacitive mode
© 2018 The Author(s). In this work, a microbial fuel cell (MFC) stack containing 28 ceramic MFCs was tested in both standard and supercapacitive modes. The MFCs consisted of carbon veil anodes wrapped around the ceramic separator and air-breathing cathodes based on activated carbon catalyst pressed on a stainless steel mesh. The anodes and cathodes were connected in parallel. The electrolytes utilized had different solution conductivities ranging from 2.0 mScm-1 to 40.1 mScm-1, simulating diverse wastewaters. Polarization curves of MFCs showed a general enhancement in performance with the increase of the electrolyte solution conductivity. The maximum stationary power density was 3.2 mW (3.2 Wm-3) at 2.0 mScm-1 that increased to 10.6 mW (10.6 Wm-3) at the highest solution conductivity (40.1 mScm-1). For the first time, MFCs stack with 1 L operating volume was also tested in supercapacitive mode, where full galvanostatic discharges are presented. Also in the latter case, performance once again improved with the increase in solution conductivity. Particularly, the increase in solution conductivity decreased dramatically the ohmic resistance and therefore the time for complete discharge was elongated, with a resultant increase in power. Maximum power achieved varied between 7.6 mW (7.6 Wm-3) at 2.0 mScm-1 and 27.4 mW (27.4 Wm-3) at 40.1 mScm-1
- …