The zero temperature Mott-Hubbard transition as a function of the Coulomb
repulsion U is investigated in the limit of large dimensions. The behavior of
the density of states near the transition at U=U_c is analyzed in all orders of
the skeleton expansion. It is shown that only two transition scenarios are
consistent with the skeleton expansion for U<U_c: (i) The Mott-Hubbard
transition is "discontinuous" in the sense that in the density of states finite
spectral weight is redistributed at U_c. (ii) The transition occurs via a point
at U=U_c where the system is neither a Fermi liquid nor an insulator.Comment: 4 pages, 1 figure; revised version accepted for publication in Phys.
Rev. Let