10 research outputs found

    La impresionante diversidad y estructura del bosque tropical a través de una gradiente altitudinal en la selva central del Perú

    Get PDF
    Los bosques pre-montanos y montanos son poco estudiados y su composición florística es muy poco conocida, aunque últimamente aquí se han descubierto nuevas especies de árboles. Describimos la diversidad, composición florística y estructura del bosque en 13 parcelas permanentes de 1 ha, evaluadas en el 2018 en el Transecto Yanachaga en el Perú (400 a 3170msnm). Registramos un total de 6998 árboles, 617 especies, 249 géneros y 82 familias. Existe unas altas correlaciones  entre la altitud, la riqueza y diversidad de especies. La mayor riquezaocurre en la parcela PNY-05 a 470 msnm con 202 especies y la menor con 43 especies en la parcela PNY-01 a 3170 mnsm. La altura promedio del dosel es mayor entre los 400 y 800 msnm, y disminuye progresivamente a medida que se va subiendo, presentando alturas mínimas entre 2800 y 3170 msnm. Este mismo comportamiento ocurre con respecto al área basal y volumen de madera. Los individuos muestreados están representados por especies de árboles (88%), palmeras (4%), helechos arborescentes (6.5%), lianas (1.5%) y hemiepífitos leñosos (0. 03%). Las f ormas de vi da varí an notablemente en el transecto altitudinal, los árboles y palmeras son más abundantes y diversos en la parte baja, mientras los helechos arborescentes son abundantes por encima de los 1800 m. Existen diferencias en la diversidad, composición y estructura de árboles entre parcelas y también si se compara al llano amazónico. Los bosques del Transecto Yanachaga juegan un papel importante, puesto que conservan una alta diversidad de especies y hábitats

    Tropical forest lianas have greater non-structural carbohydrate concentrations in the stem xylem than trees

    Get PDF
    Lianas (woody vines) are important components of tropical forests and are known to compete with host trees for resources, decrease tree growth and increase tree mortality. Given the observed increases in liana abundance in some forests and their impacts on forest function, an integrated understanding of carbon dynamics of lianas and liana-infested host trees is critical for improved prediction of tropical forest responses to climate change. Non-structural carbohydrates (NSC) are the main substrate for plant metabolism (e.g., growth, respiration), and have been implicated in enabling tree survival under environmental stress, but little is known of how they vary among life-forms or of how liana infestation impacts host tree NSC. We quantified stem total NSC (NSC) concentrations and its fractions (starch and soluble sugars) in trees without liana infestation, trees with more than 50% of the canopy covered by lianas, and the lianas infesting those trees. We hypothesized that i) liana infestation depletes NSC storage in host trees by reducing carbon assimilation due to competition for resources; ii) trees and lianas, which greatly differ in functional traits related to water transport and carbon uptake, would also have large differences in NSC storage, and that As water availability has a significant role in NSC dynamics of Amazonian tree species, we tested these hypotheses within a moist site in western Amazonia and a drier forest site in southern Amazonia. We did not find any difference in NSC, starch or soluble sugar concentrations between infested and non-infested trees, in either site. This result suggests that negative liana impact on trees may be mediated through mechanisms other than depletion of host tree NSC concentrations. We found lianas have higher stem NSC and starch than trees in both sites. The consistent differences in starch concentrations, a long term NSC reserve, between life forms across sites reflect differences in carbon gain and use of lianas and trees. Soluble sugar concentrations were higher in lianas than in trees in the moist site but indistinguishable between life forms in the dry site. The lack of difference in soluble sugars between trees and lianas in the dry site emphasize the importance of this NSC fraction for plant metabolism of plants occurring in water limited environments. Abstract in Portuguese and Spanish are available in the supplementary material. [Abstract copyright: © The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: [email protected].

    Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests

    Get PDF
    ests face increasing climate risk, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, Ψ50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk, little is known about how these vary across Earth’s largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters Ψ50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both Ψ50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth–mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon, with strong implications for the Amazon carbon sink

    Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests

    Get PDF
    Funding: Data collection was largely funded by the UK Natural Environment Research Council (NERC) project TREMOR (NE/N004655/1) to D.G., E.G. and O.P., with further funds from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, finance code 001) to J.V.T. and a University of Leeds Climate Research Bursary Fund to J.V.T. D.G., E.G. and O.P. acknowledge further support from a NERC-funded consortium award (ARBOLES, NE/S011811/1). This paper is an outcome of J.V.T.’s doctoral thesis, which was sponsored by CAPES (GDE 99999.001293/2015-00). J.V.T. was previously supported by the NERC-funded ARBOLES project (NE/S011811/1) and is supported at present by the Swedish Research Council Vetenskapsrådet (grant no. 2019-03758 to R.M.). E.G., O.P. and D.G. acknowledge support from NERC-funded BIORED grant (NE/N012542/1). O.P. acknowledges support from an ERC Advanced Grant and a Royal Society Wolfson Research Merit Award. R.S.O. was supported by a CNPq productivity scholarship, the São Paulo Research Foundation (FAPESP-Microsoft 11/52072-0) and the US Department of Energy, project GoAmazon (FAPESP 2013/50531-2). M.M. acknowledges support from MINECO FUN2FUN (CGL2013-46808-R) and DRESS (CGL2017-89149-C2-1-R). C.S.-M., F.B.V. and P.R.L.B. were financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, finance code 001). C.S.-M. received a scholarship from the Brazilian National Council for Scientific and Technological Development (CNPq 140353/2017-8) and CAPES (science without borders 88881.135316/2016-01). Y.M. acknowledges the Gordon and Betty Moore Foundation and ERC Advanced Investigator Grant (GEM-TRAITS, 321131) for supporting the Global Ecosystems Monitoring (GEM) network (gem.tropicalforests.ox.ac.uk), within which some of the field sites (KEN, TAM and ALP) are nested. The authors thank Brazil–USA Collaborative Research GoAmazon DOE-FAPESP-FAPEAM (FAPESP 2013/50533-5 to L.A.) and National Science Foundation (award DEB-1753973 to L. Alves). They thank Serrapilheira Serra-1709-18983 (to M.H.) and CNPq-PELD/POPA-441443/2016-8 (to L.G.) (P.I. Albertina Lima). They thank all the colleagues and grants mentioned elsewhere [8,36] that established, identified and measured the Amazon forest plots in the RAINFOR network analysed here. The authors particularly thank J. Lyod, S. Almeida, F. Brown, B. Vicenti, N. Silva and L. Alves. This work is an outcome approved Research Project no. 19 from ForestPlots.net, a collaborative initiative developed at the University of Leeds that unites researchers and the monitoring of their permanent plots from the world’s tropical forests [61]. The authros thank A. Levesley, K. Melgaço Ladvocat and G. Pickavance for ForestPlots.net management. They thank Y. Wang and J. Baker, respectively, for their help with the map and with the climatic data. The authors acknowledge the invaluable help of M. Brum for kindly providing the comparison of vulnerability curves based on PAD and on PLC shown in this manuscript. They thank J. Martinez-Vilalta for his comments on an early version of this manuscript. The authors also thank V. Hilares and the Asociación para la Investigación y Desarrollo Integral (AIDER, Puerto Maldonado, Peru); V. Saldaña and Instituto de Investigaciones de la Amazonía Peruana (IIAP) for local field campaign support in Peru; E. Chavez and Noel Kempff Natural History Museum for local field campaign support in Bolivia; ICMBio, INPA/NAPPA/LBA COOMFLONA (Cooperativa mista da Flona Tapajós) and T. I. Bragança-Marituba for the research support.Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, Ψ50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters Ψ50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both Ψ50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.Publisher PDFPeer reviewe

    Local hydrological conditions influence tree diversity and composition across the Amazon basin

    Get PDF
    Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures

    FODEX: X-band SAR Investigation

    No full text
    TanDEM-X high resolution spotlight bistatic single-polarisation synthetic aperture radar (SAR) images acquired from the German Aerospace Agency (DLR) for the Tropical Forest Degradation Experiment (FODEX) project. Processed into datacubes (netCDF format) for descending intensity, ascending intensity (created using SNAP software) and for descending phase height and coherence (created by Jose-Luis Bueso-Bello at DLR). In addition, a canopy height change map derived from UAV LiDAR campaigns in 2019 and 2021 over the FODEX field site in Peru, and field inventory data for the 8 FODEX core plots in Peru and Gabon. The dataset relates to the upcoming publication Harry Carstairs, Edward T.A. Mitchard, Iain McNicol, Jose-Luis Bueso-Bello, Chiara Aquino, Manuel J. Marca-Zevallos, Daniel Paucarmayta, and Mathias Disney (in submission). "X-band SAR intensity outperforms phase height and C-band intensity in predicting fine scale tropical forest dynamics”

    Non-structural carbohydrates mediate seasonal water stress across Amazon forests

    Get PDF
    Non-structural carbohydrates (NSC) are major substrates for plant metabolism and have been implicated in mediating drought-induced tree mortality. Despite their significance, NSC dynamics in tropical forests remain little studied. We present leaf and branch NSC data for 82 Amazon canopy tree species in six sites spanning a broad precipitation gradient. During the wet season, total NSC (NSCT) concentrations in both organs were remarkably similar across communities. However, NSCT and its soluble sugar (SS) and starch components varied much more across sites during the dry season. Notably, the proportion of leaf NSCT in the form of SS (SS:NSCT) increased greatly in the dry season in almost all species in the driest sites, implying an important role of SS in mediating water stress in these sites. This adjustment of leaf NSC balance was not observed in tree species less-adapted to water deficit, even under exceptionally dry conditions. Thus, leaf carbon metabolism may help to explain floristic sorting across water availability gradients in Amazonia and enable better prediction of forest responses to future climate change

    Non-structural carbohydrates mediate seasonal water stress across Amazon forests

    No full text
    Non-structural carbohydrates (NSC) are major substrates for plant metabolism and have been implicated in mediating drought-induced tree mortality. Despite their significance, NSC dynamics in tropical forests remain little studied. We present leaf and branch NSC data for 82 Amazon canopy tree species in six sites spanning a broad precipitation gradient. During the wet season, total NSC (NSCT) concentrations in both organs were remarkably similar across communities. However, NSCT and its soluble sugar (SS) and starch components varied much more across sites during the dry season. Notably, the proportion of leaf NSCT in the form of SS (SS:NSCT) increased greatly in the dry season in almost all species in the driest sites, implying an important role of SS in mediating water stress in these sites. This adjustment of leaf NSC balance was not observed in tree species less-adapted to water deficit, even under exceptionally dry conditions. Thus, leaf carbon metabolism may help to explain floristic sorting across water availability gradients in Amazonia and enable better prediction of forest responses to future climate change.</p

    Local hydrological conditions influence tree diversity and composition across the Amazon basin

    No full text
    Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures.</p
    corecore