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Abstract 34 

Lianas (woody vines) are important components of tropical forests and are known to 35 

compete with host trees for resources, decrease tree growth and increase tree mortality. 36 

Given the observed increases in liana abundance in some forests and their impacts on 37 

forest function, an integrated understanding of carbon dynamics of lianas and liana-38 

infested host trees is critical for improved prediction of tropical forest responses to 39 

climate change. Non-structural carbohydrates (NSC) are the main substrate for plant 40 

metabolism (e.g., growth, respiration), and have been implicated in enabling tree survival 41 

under environmental stress, but little is known of how they vary among life-forms or of 42 

how liana infestation impacts host tree NSC. We quantified stem total NSC (NSC) 43 

concentrations and its fractions (starch and soluble sugars) in trees without liana 44 

infestation, trees with more than 50% of the canopy covered by lianas, and the lianas 45 

infesting those trees. We hypothesized that i) liana infestation depletes NSC storage in 46 

host trees by reducing carbon assimilation due to competition for resources; ii) trees and 47 

lianas, which greatly differ in functional traits related to water transport and carbon 48 

uptake, would also have large differences in NSC storage, and that As water availability 49 

has a significant role in NSC dynamics of Amazonian tree species, we tested these 50 

hypotheses within a moist site in western Amazonia and a drier forest site in southern 51 

Amazonia. We did not find any difference in NSC, starch or soluble sugar concentrations 52 

between infested and non-infested trees, in either site. This result suggests that negative 53 

liana impact on trees may be mediated through mechanisms other than depletion of host 54 

tree NSC concentrations. We found lianas have higher stem NSC and starch than trees in 55 

both sites. The consistent differences in starch concentrations, a long term NSC reserve, 56 

between life forms across sites reflect differences in carbon gain and use of lianas and 57 

trees. Soluble sugar concentrations were higher in lianas than in trees in the moist site but 58 

indistinguishable between life forms in the dry site. The lack of difference in soluble 59 

sugars between trees and lianas in the dry site emphasize the importance of this NSC 60 

fraction for plant metabolism of plants occurring in water limited environments.   61 

Abstract in Portuguese and Spanish are available in the supplementary material. 62 

 63 

Keywords: starch, soluble sugars, liana infestation, host-tree 64 
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Introduction 66 

Lianas (woody vines) are important components in forests worldwide, especially 67 

lowland tropical forests (Gentry 1991) where they constitute up to 40% of woody stems 68 

and up to 35% of woody species richness (Schnitzer and Bongers 2011). Liana abundance 69 

and biomass are increasing throughout the Neotropics, with potentially profound 70 

implications for the future of tropical forest carbon balance (Phillips et al. 2002, Schnitzer 71 

et al. 2021). Lianas are non-self-standing plants that reach the forest canopy by using host 72 

tree stems or other established lianas as support, and can compete with trees through local 73 

light monopolization, affecting host tree carbon sequestration and growth (Schnitzer and 74 

Bongers 2002, Avalos et al. 2007, Paul and Yavitt 2011, van der Heijden et al. 2013, 75 

2015, García León et al. 2017). Lianas have developed root and vascular systems that 76 

may effectively compete with trees for water and nutrients (Pérez-Salicrup and Barker 77 

2000, Andrade et al. 2005, Meunier et al. 2021).  Furthermore, lianas can cause direct 78 

mechanical damage to host trees, causing changes in leaf and branch area index (Schnitzer 79 

and Bongers 2002, Reis et al. 2020), factors that could also limit carbon gain. Not 80 

surprisingly, liana presence is associated with major decreases in tree productivity, 81 

reproduction, biomass accumulation and biomass carbon stocks across tropical forests 82 

(Durán and Gianoli 2013, van der Heijden et al. 2015, García León et al. 2017).  83 

In the tropics, liana abundance increases towards areas with lower mean annual 84 

precipitation and longer dry seasons. Trees, in contrast, , follow the opposite pattern with 85 

greater abundance in less seasonal areas (Gentry 1991, DeWalt et al. 2010, Esquivel-86 

Muelbert et al. 2017, Parolari et al. 2020). The growth advantage lianas have over trees 87 

particularly in areas with high climatic seasonality (Schnitzer and van der Heijden 2019), 88 

are suggested to be driven by their more efficient strategy to capture dry season 89 
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precipitation (De Deurwaerder et al. 2018), and their efficient hydraulic system, with 90 

some studies also suggesting lianas also have a safe hydraulic system (Carvalho et al. 91 

2015, Chen et al. 2017, van der Sande et al. 2019). These set of characteristics  may allow 92 

lianas to absorb and transport more water and potentially enhance their growth rates 93 

without risks for their hydraulic system. The enhanced capacity lianas have in keeping  94 

water transport efficient and possibly also safety without restricting growth during the 95 

dry season, may be related to the amount and efficiency in use of their carbon stores (i.e., 96 

non-structural carbohydrates)(Schnitzer and van der Heijden 2019). Non-structural 97 

carbohydrates (NSC) are the primary products of photosynthesis, providing plants with 98 

the necessary energy for growth and survival (O’Brien et al. 2014, Hartmann and 99 

Trumbore 2016). The NSC also play a key role mediating plant responses to abiotic 100 

stresses, as they contribute to the regulation of osmotic potential and provide energy for 101 

active water transport, thereby contributing to a healthier water balance in plants (Myers 102 

and Kitajima 2007, Dietze et al. 2014, Dickman et al. 2015, Thalmann and Santelia 2017). 103 

The two main NSC fractions are the soluble sugars (glucose, fructose, sucrose, etc) which 104 

are the main substrate for plant metabolism (e.g., growth, respiration), and starch, a long-105 

term reserve that can be converted to soluble sugars when carbon demand surpasses 106 

supply (Rosa et al. 2009, Krasensky and Jonak 2012, MacNeill et al. 2017, Thalmann and 107 

Santelia 2017). Although the use of stored NSC has been hypothesised to be involved in 108 

the higher capacity lianas have to grow during the dry season compared to trees (Schnitzer 109 

and van der Heijden 2019), to our knowledge there is no study that explores the 110 

differences in NSC concentrations in co-occurring trees and lianas (Schnitzer 2018, 111 

Schnitzer and van der Heijden 2019). 112 

 Liana infestation can hinder tree growth, fecundity, and survival  (Schnitzer et al. 113 

2005, Ingwell et al. 2010, van der Heijden et al. 2015, García León et al. 2017, McDowell 114 
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et al. 2018, Reis et al. 2020). Shading caused by lianas over tree canopies can lead to a 115 

reduction in the amount of light intercepted by trees, resulting in a decrease in carbon 116 

assimilation (Godoy-Veiga et al. 2018). Meanwhile, belowground lianas compete 117 

strongly with trees belowground for water and nutrients (Pérez-Salicrup 2001, Andrade 118 

et al. 2005, Meunier et al. 2021).  The negative response to liana infestation, observed in 119 

tree growth rates, fecundity, and survival, may reflect carbon limitation resulting from 120 

decreased carbon gain in host trees caused by above and belowground competition. Such 121 

limitation in carbon gain could lead to reduction in NSC reserves in trees, that in turn can 122 

reduce tree growth and limit its ability to deal with environmental stressors (e.g., 123 

drought). Nevertheless, to our knowledge there is no empirical evidence that liana 124 

infestation can cause reduction in NSC reserves in long-term storage organs (e.g., stem) 125 

of host trees. Given the increase in liana abundance in some tropical areas (Phillips et al. 126 

2002, Schnitzer et al. 2021), it is essential to provide a mechanistic explanation of their 127 

impact on tree function, which will enable estimates of future changes in species 128 

composition and carbon stocks in tropical forests.  129 

It has been demonstrated that in Amazonian forests the NSC concentrations in tree 130 

species can vary along climatic gradients (Signori-Müller et al. 2021), with higher 131 

proportion of soluble sugars in species occurring in drier areas (precipitation < 2000 132 

mm/year). The concentration of NSC in Amazonian species can also vary depending on 133 

plant life history strategy (i.e., fast vs. slow growing species), with slow-growing species 134 

presenting higher starch storage and less seasonal variation of NSC than fast-growing 135 

species(Herrera‐Ramirez et al. 2021, Signori-Müller et al. 2022). The position of a species 136 

along the fast–slow growth continuum may have important implication in plant capacity 137 

to deal with stressors, for example Visser et al. (2018) showed that in tropical tree species, 138 

liana infestation has stronger negative effects on growth and survival of fast-growing 139 
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species than in slow-growing species. Fast-growing species, which have lower NSC 140 

concentrations than slow-growing species (Herrera‐Ramirez et al. 2021, Signori‐Müller 141 

et al. 2022), may be more vulnerable to liana infestation due to impairment between 142 

carbon assimilation and demand for metabolism maintenance. None of these studies, 143 

however, have investigated the NSC storage in plants with different life forms (lianas vs 144 

trees) and on the impact of liana infestation on NSC reserves of host trees. To address 145 

this knowledge gap, we sampled trees infested by lianas, the lianas infesting those trees, 146 

and non-infested trees in two Amazon locations with contrasting mean annual 147 

precipitation and dry season length. We quantified starch and soluble sugars, which 148 

comprise the most significant portions of NSC reserves in most trees (Martínez-Vilalta et 149 

al. 2016). We hypothesized that 1) liana infestation negatively impact on the NSC 150 

reserves of host-trees, with stronger impact in fast-growing species (Visser et al. 2018). 151 

Additionally, we expected trees infested by lianas to have lower NSC concentrations than 152 

non-infested trees in the dry site, where trees are less adapted to shading (Medina-Vega, 153 

Bongers, Schnitzer, et al. 2021) and where the forest may already be at their physiological 154 

limit (Tavares et al. 2023); 2) co-occurring lianas and tress will have different NSC 155 

concentrations per gram of dry wood, with lianas having higher stem NSC concentrations 156 

compared to trees in both, the dry and moist site. It because lianas have  better capacity 157 

to intercept light than trees, which can reflect in enhanced carbon gain leading to higher 158 

stem NSC concentration on a dry mass basis in wood , with accentuated differences in 159 

the dry site(Medina-Vega, Bongers, Schnitzer, et al. 2021, Medina-Vega et al. 2022).  160 

Material and methods 161 

Site description and species selection  162 

We performed our sampling in two forests in the Amazon with contrasting 163 
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precipitation regimes. One of the sites is in the Western Amazon, in the Tambopata 164 

National Reserve, Puerto Maldonado, Madre de Dios, Peru (12°49’S, 69°16’W), 165 

hereafter referred to as the moist site. In this site mean annual precipitation is ≈2450 166 

mm/year, with a three-month dry season (rainfall < 100 mm; Sombroek 2001) extending 167 

from June to August (Fick and Hijmans 2017). The other chosen site is an ecotonal forest 168 

located at the dry fringe of the Amazon basin, in a permanent plot in Fazenda Vera Cruz, 169 

Nova Xavantina, Mato Grosso, Brazil (14°49' S, 52°9' W), hereafter referred as the dry 170 

site. In this site mean annual precipitation is ~1500 mm and the dry season can last up to 171 

six months (Marimon et al. 2010). We selected these sites due to the markedly differences 172 

in climatic conditions and consequently species composition and likely functional 173 

strategies to identify the difference in NSC storage of co-occurring trees and lianas living 174 

in contrasting environments. 175 

Studies with seedlings and adult trees have shown that the stem represents one of 176 

the major storage organs for NSC (Poorter and Kitajima 2007, Martínez-Vilalta et al. 177 

2016) therefore due to financial constraints to sample and perform chemical analysis we 178 

focus our study on the xylem stem of trees and lianas. In both sites, sampling occurred 179 

during the wet season, taking place in January 2017 in the moist site and in December 180 

2017 in the dry site. Although stems have smaller diurnal variation in NSC concentrations 181 

compared to canopy organs (Tixier et al. 2018), we standardized the sampling time to be 182 

between 08:30 and 11:00 a.m. In the field and during the transport to the laboratory, 183 

samples were kept on ice. Upon arrival at the laboratory, we microwaved the samples for 184 

90 s at 700 W to stop enzymatic processes and oven-dried at ~60°C for at least 48 hr or 185 

until they were completely dry.  186 

In each site we sampled trees infested by lianas, the lianas infesting the trees and 187 
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non-infested trees. We selected the trees based on the liana Crown Occupancy Index 188 

(COI, percentage of the canopy covered by lianas, Schnitzer et al. 2005) and tree diameter 189 

at breast high (DBH). Here, we considered infested those trees with COI = 3 or 4, meaning 190 

that liana cover was more than 50% or 75% of tree canopy cover, respectively. All lianas 191 

with DBH ≥ 5 cm infesting the trees were then sampled too. Non-infested trees are those 192 

with COI = 0, meaning that there were no liana infesting the tree canopy.  193 

In both sites, wherever possible, we sampled individuals with a similar diameter 194 

for the trees of the same species, resulting in no difference in diameter between infested 195 

and non-infested trees in both sites (Fig. 1S). Both in the moist and dry site we selected 196 

late-successional canopy species for NSC sampling. In the moist site all sampled trees 197 

had a DBH ≥ 20 cm. This is a hyperdiverse forest making it challenging to find many 198 

infested and non-infested individuals of the same species. We selected those tree species 199 

that are representative of the community and which we could find at least three infested 200 

and non-infested individuals (Table 1), the sampled species represent ≈24% of the total 201 

plot basal area. In the moist site we sampled 59 individual trees (30 non-infested, 29 202 

infested) from 10 species, and 55 lianas with DBH ≥ 5 that were infesting those trees. 203 

From the 10 species we sampled in the moist site eight are evergreen, one is deciduous 204 

(Pouteria torta), and one is a semi-deciduous species (Cedrelinga cateniformis). For 205 

Amazonian species wood density and tree size are good proxies for life-history strategies 206 

(Coelho de Souza et al. 2016).In the moist site, species span a wide range across the fast–207 

slow continuum of growth, with species with wood density as low as 0.38 g/cm3 to up to 208 

0.87 g/cm3 (Chave et al. 2009, Zanne et al. 2009). 209 

In the dry site, due to the smaller tree sizes, sampling was performed on trees with 210 

diameter ≥ 10 cm.  However, preference was given to larger individuals whenever 211 
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possible. In the dry site, we sampled individuals from four species from a mixed plot 212 

where these species accounted for ≈61% of the total plot basal area (Soares Jancoski et 213 

al. 2022), and one species, Brosimum rubescens, from a plot where it is the 214 

monodominant species and accounts for ≈70% of the total plot basal area. For the dry site 215 

we sampled in total 71 trees (31 non-infested trees, 40 infested trees) and 37 lianas with 216 

DBH ≥ 5 cm infesting those trees. In the dry site four out five species are evergreen, and 217 

one is a brevi-deciduous (Mabea fistulifera). Species sampled in this site have high wood 218 

density, varying between 0.61 to 0.80 g/cm3 (Soares Jancoski et al. 2022). Due to the 219 

difficulty in accessing leaf and fertile material, lianas were not identified on any of the 220 

sites.  221 

We collected stem samples for both trees and lianas at 1.20 m above the ground 222 

using a 4.3 mm increment borer (Haglöf Company Group, Sweden). To quantify the 223 

stored NSC concentration and not transient sugars we removed the bark and phloem and 224 

then obtained the stem xylem cores of lianas and trees. As tree species vary in their growth 225 

rates, we use a proportion of the sampled core that should roughly represent the last five 226 

years of growth increment. This is because liana infestation status (COI) changes over 227 

time and we established five years as the minimum period over which COI measured 228 

during our field campaign could reasonably be expected to apply. Establishing a fixed 229 

window for analysis based on five years of growth should also reduce the bias caused by 230 

trees growing under different environmental conditions. To estimate the proportion of the 231 

core to use in the NSC analyses we calculated the growth rate of each species using 232 

inventory data from TAM-05, TAM-07, VCR-01 and VCR-02 plots (Lopez-Gonzalez et 233 

al. 2011, ForestPlot.net et al. 2021). When possible, we used the growth rate of the 234 

sampled individual trees to estimate the amount of material for NSC analysis. When this 235 

was not possible, we used the mean growth rate calculated for the species across all 236 
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individuals of the species occurring in the plot. It is worth noting that the sampled infested 237 

and non-infested trees did not differ in growth rate, likely due to a temporal mismatch 238 

between the growth data at our disposal and the liana infestation data (data not presented). 239 

This result may reflect the small number of individuals of each species, and the fact that 240 

for some of them it was not possible to obtain the mean growth rate. Lianas have a small 241 

stem diameter increment (Putz 1990, Restom and Nepstad 2004), and therefore, we 242 

standardize the amount of material used to 1.5 cm long cores (excluding bark and phloem) 243 

to ensure that we had enough liana material for the NSC analysis.  244 

Non-structural carbohydrates quantification 245 

Before the NSC quantification we ground the samples to a fine powder 246 

(GenoGrinder®, USA). Non-structural carbohydrates are defined here as free, low 247 

molecular weight sugars (glucose, fructose, sucrose, etc) plus starch. NSC was analysed 248 

as described in Hoch et al. (2002) with minor modifications (Rowland et al. 2015, 249 

Signori-Müller et al. 2021, 2022). First, we diluted 15 mg of the ground plant material 250 

with 1.6 ml of distilled water and then incubated in a water bath at 90–100°C for 60 min 251 

to solubilize sugars. We then took an aliquot of 700 μl from each sample and used the 252 

remaining aliquot volume (900 μl) to determine soluble sugar concentrations using 253 

invertase from Saccharomyces cerevisiae (Sigma-Aldrich, USA) to break down sucrose 254 

and fructose to glucose. Additionally, for both reaction routines, we used GAHK 255 

(Glucose Assay Hexokinase Kit – Sigma-Aldrich, USA) together with phosphoglucose 256 

isomerase from Saccharomyces cerevisiae (Sigma-Aldrich, USA). The concentration of 257 

free glucose was measured photometrically in a 96-well microplate spectrophotometer at 258 

340 mm (EPOCH – Biotek Instruments INC, USA). The 700 μl aliquot that we initially 259 

separated was incubated overnight to react with amyloglucosidase from Aspergillus niger 260 
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(Sigma-Aldrich, USA) to break down the total NSC to glucose. Thereafter total glucose 261 

(corresponding to NSC) was determined as described above and starch was calculated as 262 

total NSC minus soluble sugars. All NSC values are expressed in mg/g dry mass. 263 

Statistical analysis  264 

We performed all statistical analysis using R software (R Core Team 2018, 265 

version 4.2.3). Preliminary tests included: analysis of normality (Shapiro–Wilk), and 266 

homogeneity of variances (Flinger–Killeen) for each NSC fraction (NSC, starch and 267 

soluble sugars). As NSC, starch and soluble sugars were not normally distributed, we 268 

used non-parametric analyses or log1p transformed the data.  269 

To conduct a paired analysis to test differences in median stem NSC, starch and 270 

soluble sugars between infested and non-infested trees we averaged the concentration per 271 

species and used the Paired Samples Wilcoxon Test. We also tested the effect of 272 

infestation at species level for species where n ≥ 3 (Tab. 1) using a t-test, following log1p 273 

transformation of NSC data. We investigated whether infestation influences NSC 274 

concentration of trees depending on the leaf habit. Due to the small number of species 275 

that are not evergreen (Tab. 1), we used the individual value of each sampled tree and 276 

grouped deciduous and semi-deciduous species into a single group. Analysis was 277 

conducted independently for each site and NSC fraction using Wilcoxon Tests.  278 

As species with different life strategies may differ in their response to liana 279 

infestation (Visser et al. 2018), we tested how the NSC varied depending on the level of 280 

infestation (COI) interacting with species wood density, a trait established as a good 281 

proxy  to identify the position of species across the fast-slow continuum of growth for 282 

Amazonian species (Kitajima and Poorter 2008, Coelho de Souza et al. 2016). We 283 
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perform the analysis separately from each site and each NSC fraction using the lmer 284 

function from lme4 package (Bates et al. 2007), for this analysis we used the individual 285 

log1p transformed NSC, starch and soluble sugars concentration for each tree and species 286 

as random effect. Wood density data from the dry site is from (Soares Jancoski et al. 287 

2022) and from the moist site from (Zanne et al. 2009), diameter was measured in situ in 288 

the sampled trees at 130 cm above the ground.  289 

To compare the NSC concentration of trees and lianas we used Wilcoxon rank 290 

sum test. Analysis was performed using the individual NSC concentration of each 291 

individual tree and liana, for each NSC fraction and site. As lianas were not identified it 292 

was not possible to carry out analysis that control for the lack of independence between 293 

observations within species. For all analyses, we assumed a significance level of 0.05. 294 

Results 295 

Infested vs non-infested trees  296 

Our results demonstrate that NSC concentrations in stem xylem are similar in 297 

infested (Median±SE; 30.8 ± 1.73 mg/g) and non-infested trees (28.4 ± 1.43 mg/g; p > 298 

0.05; Paired Samples Wilcoxon Test; Fig. 2S). Furthermore, these results remain 299 

consistent across both the dry and moist sites (Fig. 1). Infested and non-infested trees 300 

have similar starch (infested: 16.0 ± 1.92 mg/g; non-infested: 1.32 ± 1.31 mg/g) and 301 

soluble sugars (infested: 7.67 ± 1.35 mg/g; non-infested: 7.88 ± 0.75 mg/g) concentration 302 

(Fig 2S), with results consistent for the dry and moist sites (Fig. 1). At species level (Fig. 303 

2), only Pouteria torta, from the moist site, showed statistically significant differences in 304 

stem starch concentration between infested (17.8 ± 2.17 mg/g) and non-infested trees 305 

(34.7 ± 1.55, p <0.05), all other species from both sites had similar stem NSC, starch and 306 
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soluble sugars concentrations between infested and non-infested trees. There were also 307 

no significant differences observed between infested and non-infested trees when we 308 

examined deciduous and evergreen species separately (Fig. 3S).  309 

We fitted Linear Mixed-Effects Models to predict NSC, starch and soluble sugar 310 

concentration with infestation level and wood density as predictors and found that overall, 311 

the explanatory power of these models was low, especially at the dry site (Table 2 and3). 312 

Interaction between infestation level (COI), and wood density did not explain the variance 313 

in any NSC fraction in both dry and moist sites (Fig. 4S). Only wood density alone in the 314 

moist site has a statistically significant and positive relationship on stem NSC and starch 315 

concentration (Fig. 3; Table 2-3). 316 

Trees vs. lianas 317 

Due to the lack of differences in NSC, starch and soluble sugar concentrations 318 

between infested and non-infested trees we grouped them to compare to lianas.  319 

 Lianas have higher stem NSC concentrations than trees (Fig. 4) both in the dry 320 

(liana: 59.1 ± 6.15 mg/g; tree: 34.2 ± 3.69 mg/g; p < 0.001) and moist site (liana: 59.5 ± 321 

6.15 mg/g; tree: 24.8 ± 4.43 mg/g; p < 0.001). Stem starch concentrations were higher in 322 

lianas than in trees (Fig. 4), both in the dry (liana: 47.2 ± 5.56 mg/g; tree: 16 ± 3.30 mg/g; 323 

p < 0.001; Wilcoxon rank sum test) and moist site (liana: 44 ± 6.69 mg/g; tree: 17.9 ± 324 

4.33; p < 0.001). In the moist site, stem soluble sugar concentrations were higher in lianas 325 

(17.6 ± 1.31 mg/g; p < 0.001) than in trees (6.25 ± 0.73 mg/g; Fig. 4), while in the dry 326 

site both life forms have similar stem soluble sugar concentrations (liana: 11.5 ± 1.24 327 

mg/g; tree: 12.6 ± 1.83 mg/g; p = 0.92). Lianas had similar NSC, starch and soluble sugar 328 

concentrations in both sites (Fig. 6S), while trees only differed among sites with respect 329 
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to soluble sugar concentrations, which was higher in the dry site (Fig. 6S) 330 

The proportion of total NSC allocated to soluble sugars (SS:NSC) was similar 331 

between lianas (30.0 ± 2.67) and trees (29.3 ± 2.75) in the moist site (p = 0.60; Wilcoxon 332 

rank sum test), but not in the dry site (Fig. 5), where we find trees have higher SS:NSC 333 

(49.1 ± 3.73) than lianas (30.9 ± 3.16; p = 0.005). Intersite comparisons show that lianas 334 

have similar SS:NSC among sites (p > 0.05), while for trees the higher SS:NSC are found 335 

in the dry site (p < 0.001; Fig. 6S). 336 

Discussion 337 

Despite its role in plant fitness, to our knowledge, this is the first study to 338 

investigate differences in NSC concentrations of trees and lianas, and the effect of liana 339 

infestation on tree NSC concentrations. The hypothesis that lianas have higher xylem 340 

stem NSC than trees was confirmed by our results (Fig. 2). However, our hypothesis that 341 

major differences in NSC concentration between trees and lianas would occur in the dry 342 

site was not confirmed by our results. In fact, in the dry site, soluble sugar concentrations 343 

in tree stem xylem were indistinguishable to those from lianas, while starch and total NSC 344 

were higher in lianas than in trees in both sites (Fig. 4). Despite the negative impact of 345 

liana infestation on host trees (Schnitzer et al. 2005, 2014, van der Heijden et al. 2013, 346 

2015, Reis et al. 2020), our results do not support the hypothesis that liana infestation can 347 

lead to changes in stem NSC concentration of Amazonian trees (Fig. 1).  348 

Infested vs non-infested trees 349 

Liana presence may prevent trees from experiencing the expected maximum 350 

growth capacity throughout their lifetime (Godoy-Veiga et al. 2018), with more 351 

pronounced negative effect in fast-growing species than in slow-growing species (Visser 352 
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et al. 2018). Despite that we found no difference in stem NSC, starch and soluble sugar 353 

concentration of infested and non-infested trees regardless of tree life-history strategy 354 

(Tab. 1-2, Fig. 3, Fig. 4S). The fitted linear models only showed a significant relationship 355 

between NSC and starch with wood density in the moist site (Fig. 3), and it was 356 

independent of infestation or tree size. These results are in line with previous studies with 357 

Amazonian species, which showed that across the fast-slow continuum of life story 358 

strategies, stem starch is positively related with wood density (Herrera‐Ramirez et al. 359 

2021, Signori-Müller et al. 2022). The lack of relationship between starch and wood 360 

density in the dry site may reflect the fact that only species with high wood density were 361 

sampled there. Reis et al. (2020) showed that in the southern Amazonia, where our dry 362 

site is located, slow-growing, dense-wooded species are more susceptible to liana 363 

infestation than fast-growing species, elucidating the absence of species with low wood 364 

density in our data set. Considering the many impacts lianas have on trees performance 365 

and community structure the results we found are surprising. (Ingwell et al. 2010, García 366 

León et al. 2017, Reis et al. 2020). 367 

Although lianas can exert mechanical damage on host trees, causing changes in 368 

leaf and branch area index (Schnitzer and Bongers 2002, Reis et al. 2020) the mechanical 369 

stress they induce on host trees does not affect stem NSC concentrations (Fig. 1).  370 

Rademacher et al. (2021), manipulated phloem transport in a conifer species through 371 

compressing the stem, and found that although compression affects wood formation it 372 

does not affect the NSC reserves. Investigating the impact of liana infestation on water 373 

status of trees species in a forest close to our dry site, in southeast Amazon, Beú (2019) 374 

found infested and non-infested trees have similar pre-dawn and mid-day water potential 375 

across seasons. Based on our findings of no difference in NSC concentrations between 376 

infested and non-infested trees, we hypothesise that the much-reported impacts of lianas 377 
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on forest dynamics (reduced growth, increased mortality) (Ingwell et al. 2010, van der 378 

Heijden et al. 2015, Reis et al. 2020, 2022), may be mediated primarily by the weakening 379 

of tree structure..  380 

 381 

Tree vs lianas 382 

Parenchymatic cells constitute a major NSC storage compartment in plants 383 

(Plavcová and Jansen 2015), and have been reported to be found in lianas in amounts 384 

about twice as high as in angiosperm trees (Morris et al. 2016). We find the stem xylem 385 

NSC concentrations in lianas are the double of that in trees. This may be driven by a 386 

greater parenchyma fraction in stem xylem of lianas relative to trees and not necessarily 387 

by greater NSC concentrations per unit of parenchyma.  388 

Trees can have access to NSC pools integrating carbon accumulated over more 389 

than a decade (Vargas et al. 2009, Muhr et al. 2018). Despite the ability of trees to use 390 

old, stored carbon, some NSC accumulated in woody tissues may become sequestered, 391 

and therefore not available for future use, representing a metabolic dead end, with the 392 

carbon no longer physiologically active and so not affecting metabolism (Millard et al., 393 

2007). Maximum ages of accessible carbon reserves could be affected by the time that 394 

sapwood is alive and functional before it undergoes heartwood transformation (Muhr et 395 

al. 2018). Average sapwood lifespans for tropical tree species can vary between 5.7 and 396 

88.6 years with an average of 29.78 years (van der Sande et al. 2015). In the trees, we 397 

quantified the NSC concentration in a portion of the xylem that represent the increment 398 

of the last five years (see methods), which likely encompasses the functional portion of 399 

the xylem. For lianas, we standardized the length of the xylem segment we used for 400 

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/advance-article/doi/10.1093/treephys/tpad096/7243038 by guest on 07 Septem

ber 2023



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

18 

 

analysis to 1.5 cm, which may represent growth increments of > 10 years (considering 401 

stem increment of 1.4 mm/year presented by Putz 1990 and Restom and Nepstad 2004). 402 

Information about liana sapwood lifespan is missing, however it is known that they have 403 

a high sapwood to heartwood ratio (Tyree and Ewers 1996), therefore for the purposes of 404 

this study we assume the xylem portion we analysed for lianas is active and reserves in 405 

this portion accessible to be used. To understand the liana dynamics and its increase in 406 

abundance in some areas, we must comprehend its carbon metabolism, including the 407 

dynamics of NSC, which remains unexplored compared to the water relations (i.e., 408 

hydraulic traits). Future studies should prioritize investigating the life span of liana xylem 409 

and the extent to which lianas can utilize stored (NSC) that are several years old and in 410 

which temporal scale it occurs (seasonally vs extreme events) (Carbone et al. 2007, 411 

Vargas et al. 2009). 412 

A recent study conducted in a tropical forest in Panama showed that lianas have 413 

the ability to maintain higher growth rates during dry season and the authors speculate 414 

this may occur through the maintenance of high water potential or by relying on stored 415 

NSC (Schnitzer and van der Heijden 2019). Starch, which we found concentrations in 416 

lianas to be higher than in trees in both sites, is a long term NSC fraction that can be 417 

remobilized to fulfil plant needs for carbon when demand is higher than assimilation 418 

(MacNeill et al. 2017). Through analysis of scanning electron photomicrographs of liana 419 

xylem, Masrahi (2014) found a dense accumulation of starch grains on ray parenchyma 420 

cells near vessel groups of lianas from a very dry area (precipitation 150 mm/year). We 421 

speculate that by relying on the structural investment of trees for mechanical support, 422 

lianas can allocate a high proportion of the assimilated carbon into reserves. By being 423 

hydrolysed into soluble sugars, starch can support growth, enhance water flow by raising 424 

vessel osmotic pressure to regulate conductance and reduce the risk of embolism entering 425 
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the vessels (Thalmann and Santelia 2017, Tomasella et al. 2017). High concentrations of 426 

starch allied to parenchyma cells in contact with vessels could enable lianas to have easy 427 

access and use of the NSC reserves, increasing hydraulic efficiency without 428 

compromising safety (Secchi et al. 2017), promoting growth during period of carbon 429 

limitation and fuelling liana reproductive events and leaf flush (Olson 2003, Schnitzer 430 

and van der Heijden 2019). 431 

In this study differences between trees and lianas were overall consistent in both 432 

dry and moist sites, while other studies found co-occurring trees and lianas differ more in 433 

drier than in wetter sites in functional traits related to water transport, (Medina-Vega, 434 

Bongers, Poorter, et al. 2021, Smith-Martin et al. 2022). The only similarity observed in 435 

stem NSC concentration between the different life forms was found in the soluble sugars 436 

fraction in the dry forest (Fig. 4). Although absolute stem soluble sugar concentration of 437 

both life-forms was similar in the dry site, the proportion of the total NSC allocated to 438 

soluble sugars (SS:NSC) was higher for trees than for lianas (Fig. 5). A study considering 439 

leaves and branches of Amazonian tree species, also found higher SS:NSC in more dry 440 

and seasonal sites (Signori-Müller et al. 2021). Together these results reinforce the idea 441 

that soluble sugars cannot be drawn below a certain threshold (Sala et al. 2012) due to its 442 

immediate role in the maintenance of plant metabolism (e.g., growth, respiration, 443 

osmoregulation, embolism repair, etc. Rosa et al. 2009, Krasensky and Jonak 2012, 444 

MacNeill et al. 2017, Thalmann and Santelia 2017). Based on the higher starch 445 

concentrations in lianas than in trees, lianas could have more carbon to fulfil their soluble 446 

sugar requirements than trees, in both dry and moist sites. The increase in liana abundance 447 

towards areas that are experiencing reduction in water availability and increasing 448 

seasonality, especially in the Neotropics (Phillips et al. 2002, Laurance et al. 2014, 449 

Marimon et al. 2020), may be the result of a well-adjusted hydraulic system and carbon 450 
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metabolism (McDowell 2011).  451 

Conclusion 452 

In Amazonian tree species, high  starch concentration in stem xylem is linked to 453 

high wood density and low mortality rates (Herrera‐Ramirez et al. 2021, Signori-Müller 454 

et al. 2022).  For lianas, it is unknown whether starch or soluble sugar concentrations are 455 

related to plant life-history traits and whether the seasonal dynamics are similar to those 456 

in trees. An increasing number of experimental studies with mature trees, seedlings and 457 

shrubs shows that under stressful conditions plants with higher NSC concentrations can 458 

cope better with stressors (e.g., drought, canopy damage), hence increasing survival rates 459 

(e.g., O’Brien et al. 2014, Shibata et al. 2016, Tomasella et al. 2017, Gessler and 460 

Grossiord 2019, Guo et al. 2020). Non-structural carbohydrates may play a similar role 461 

in liana response to stressors as it does in plants with other life forms, even favouring 462 

liana growth in periods that trees would prioritize the maintenance of storage  (Schnitzer 463 

and van der Heijden 2019, Chuste et al. 2019). The high starch concentration in lianas 464 

compared to trees, point to differences in carbon gain (Cai et al. 2009) and possibly in 465 

carbon storage and use. To be able to predict changes in forest composition and carbon 466 

accumulation, we need to understand the mechanisms linked to liana ability to increase 467 

in abundance in areas where seasonality in precipitation is increasing. An underrate but 468 

key component to understand it can be related to how liana use its carbon reserves and 469 

how well coordinated it is with their hydraulic system. Despite their significance, lianas 470 

are persistently understudied and even a basic understanding of NSC dynamics remains 471 

elusive (Zotz et al. 2006, Slot et al. 2014). 472 

We do not rule out the hypothesis that liana infestation may impact the NSC 473 

dynamics of host trees. To better understand if it is the case, future studies should 474 
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investigate for example if there are differences in NSC concentrations of infested and 475 

non-infested trees also during the dry season, when water transport and carbon 476 

assimilation are potentially compromised (Wagner et al. 2016). Leaves and branches, 477 

which have more dynamic NSC pools should also be considered (Würth et al. 2005, 478 

Signori-Müller et al. 2022). It may be that the canopy organs may have more carbon 479 

imbalance due to liana infestation than the stem xylem, which can serve as a long-term 480 

storage organ thus less affected if storage is prioritized over growth (Herrera‐Ramirez et 481 

al. 2021, Signori-Müller et al. 2022).   482 
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 958 
Figure 1 – Concentrations of stem non-structural carbohydrates (NSC), starch and 959 

soluble sugars in co-occurring trees species with liana infestation ≥ 50% (grey) and in 960 

trees without liana infestation (white). For figure and analysis, we used the mean 961 

concentration per species. Differences between groups were tested using Paired Samples 962 

Wilcoxon Test. Data are present for the dry and moist site. Dry site: infested n = 40, non-963 

infested n = 31; Moist site: infested n = 29, non-infested n = 30. Each box encompasses 964 

the 25th to 75th percentiles; the median is indicated by the horizontal line within each 965 

box while external horizontal lines indicate the 10th and 90th percentiles; dots indicate 966 

outlier. 967 
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 970 

Figure 2 – Concentrations of stem non-structural carbohydrates (NSC), starch and 971 

soluble sugars from trees infested by lianas (grey) and non-infested trees (white). Data 972 

are present for the dry site (top panels) and moist site (bottom panels). Micropholis 973 

guyanensis was excluded due to small sample size (n <3). Data was log1p transformed 974 

and differences between groups was tested using T-Test. Each box encompasses the 25th 975 

to 75th percentiles; the median is indicated by the horizontal line with each box while 976 

external horizontal lines indicate the 10th and 90th percentiles. 977 
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 980 

Figure 3 – Relationship between stem non-structural carbohydrates (NSC), starch and 981 

soluble sugars (mg/g) with wood density (g/cm3). Mean wood density per species in the 982 

dry site ( n = 5 species) are from Soares Jancoski et al. (2022) and for the species in moist 983 

site (n = 10 species)  we used the basin mean from Zanne et al. (2009). The R2 values 984 

were calculated using ordinary linear regression, NSC concentration and its fraction were 985 

log1p transformed before analysis. Gray colour represent infested trees and black colour 986 

non-infested trees.  987 
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 990 

Figure 4 – Concentrations of stem non-structural carbohydrates (NSC), starch and 991 

soluble sugars in co-occurring lianas (purple), and trees (green). Data are present for the 992 

dry and moist site. To test for differences between life form within site we used Wilcoxon 993 

rank sum test. Dry site: liana n = 37, tree n = 71; Moist site: liana n = 73, tree = 59 994 

individuals. Each box encompasses the 25th to 75th percentiles; the median is indicated 995 

by the horizontal line with each box while external horizontal lines indicate the 10th and 996 

90th percentiles; dots indicate outliers. 997 
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 1000 

Figure 5 – Comparison of proportion of NSC in the form of soluble sugars (SS:NSC) in 1001 

stems of co-occurring lianas (brown), and trees (green). Data are present for the dry and 1002 

moist site. To test for differences between life-form within site we used Wilcoxon rank 1003 

sum test. Dry site: liana n = 37, tree n = 71; Moist site: liana n = 73, tree = 59 individuals. 1004 

Each box encompasses the 25th to 75th percentiles; the median is indicated by the 1005 

horizontal line with each box while external horizontal lines indicate the 10th and 90th 1006 

percentiles; dots indicate outliers.  1007 
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 1011 

Table 1 – Collected species and number of infested and non-infested trees, in the dry and 1012 

in the moist site.  1013 

Species Site n WD* Phenology 

Amaioua guianensis Dry Infested = 3 0.67 Evergreen 

Non-infested = 

5 

Brosimum rubescens Dry Infested = 11 0.80 Evergreen 

Non-infested = 

9 

Chaetocarpus 

echinocarpus 

Dry Infested = 11 0.79 Evergreen 

Non-infested = 

4 

Ephedranthus parviflorus Dry Infested = 6 0.72 Evergreen 

Non-infested = 

6 

Mabea fistulifera Dry Infested = 9 0.61 Brevi-

deciduous Non-infested = 

7 

Calophyllum brasiliense Moist Infested = 3 0.58 Evergreen 

Non-infested = 

3 

Cedrelinga cateniformis Moist Infested = 3 0.50 Semi-

deciduous Non-infested = 

3 

Eschweilera coriacea Moist Infested = 3 0.85 Evergreen 

Non-infested = 

3 

Hymenaea parvifolia Moist Infested = 3 0.87 Evergreen 

Non-infested = 

3 

Hymenopus 

heteromorphus** 

Moist Infested = 3 0.81 Evergreen 

Non-infested = 

3 

Micropholis guyanensis Moist Infested = 2 0.65 Evergreen 

Non-infested = 

3 

Pourouma guianensis Moist Infested = 3 0.38 Evergreen 

 Non-infested = 

3 

Pourouma minor Moist Infested = 3 0.43 Evergreen 

Non-infested = 

3 

Pouteria torta Moist Infested = 3 0.76 Deciduous 

Non-infested = 

3 

Protium altissimum*** Moist Infested = 3 0.70 Evergreen 
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Non-infested = 

3 

*WD: wood density (g/cm3); **Former Licania heteromorpha; *** Former Tetragastris 1014 

altissima1015 

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/advance-article/doi/10.1093/treephys/tpad096/7243038 by guest on 07 Septem

ber 2023



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

 

40 

 

Table 2 – Linear Mixed-Effects Models results to predicting non-structural carbohydrate, starch, and soluble sugars with Crown Occupancy 1016 

Index (COI) and Wood Density (WD) in the dry site.  1017 

 1018 

 1019 

 1020 

 1021 

 1022 

 1023 

 1024 

 1025 

*Not estimated because variance estimates for random effect is nearly zero.  1026 

  log1p (NSC) log1p (Starch) log1p (Soluble Sugars) 

Predictors Estimates CI p Estimates CI p Estimates CI p 

(Intercept) 1.46 -1.44 – 4.35 0.319 -0.62 -5.83 – 4.58 0.812 2.44 -0.90 – 5.77 0.149 

COI 0.03 -1.04 – 1.11 0.952 0.03 -1.87 – 1.94 0.972 -0.25 -1.28 – 0.78 0.633 

WD 2.85 -1.16 – 6.86 0.161 4.39 -2.82 – 11.60 0.228 0.19 -4.43 – 4.82 0.933 

COI × WD -0.07 -1.56 – 1.41 0.923 -0.13 -2.76 – 2.50 0.922 0.37 -1.05 – 1.79 0.603 

Random Effects 

σ2 0.77 2.42 0.70 

τ00 0.00 Species 0.01 Species 0.05 Species 

ICC   0.00 0.07 

N 5 Species 5 Species 5 Species 

Observations 71 71 71 

Marginal R2 / Conditional R2 0.055 / NA* 0.043 / 0.047 0.013 / 0.080 
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Table 3 – Linear Mixed-Effects Models results to predicting non-structural carbohydrate, starch, and soluble sugars with Crown Occupancy 1027 

Index (COI) and Wood Density (WD) in the wet site. Bolt values represent significative relationships. 1028 

 1029   log1p (NSC) log1p (Starch) log1p (Soluble Sugars) 

Predictors Estimates CI p Estimates CI p Estimates CI p 

(Intercept) 2.06 0.72 – 3.39 0.003 0.73 -0.98 – 2.43 0.396 2.18 1.27 – 3.10 <0.001 

COI -0.24 -0.55 – 0.06 0.110 -0.10 -0.51 – 0.31 0.629 -0.27 -0.58 – 0.03 0.075 

WD 2.14 0.17 – 4.10 0.033 3.55 1.04 – 6.05 0.006 -0.19 -1.53 – 1.16 0.781 

COI × WD 0.29 -0.15 – 0.72 0.194 0.08 -0.52 – 0.68 0.795 0.37 -0.06 – 0.81 0.093 

Random Effects 

σ2 0.23 0.43 0.23 

τ00 0.19 Species 0.30 Species 0.05 Species 

ICC 0.46 0.41 0.18 

N 10 Species 10 Species 10 Species 

Observations 59 59 59 

Marginal R2 / Conditional R2 0.332 / 0.637 0.352 / 0.616 0.062 / 0.230 
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