87 research outputs found

    Stress related epigenetic changes may explain opportunistic success in biological invasions in Antipode mussels

    Get PDF
    Different environmental factors could induce epigenetic changes, which are likely involved in the biological invasion process. Some of these factors are driven by humans as, for example, the pollution and deliberate or accidental introductions and others are due to natural conditions such as salinity. In this study, we have analysed the relationship between different stress factors: time in the new location, pollution and salinity with the methylation changes that could be involved in the invasive species tolerance to new environments. For this purpose, we have analysed two different mussels’ species, reciprocally introduced in antipode areas: the Mediterranean blue mussel Mytilus galloprovincialis and the New Zealand pygmy mussel Xenostrobus securis, widely recognized invaders outside their native distribution ranges. The demetylathion was higher in more stressed population, supporting the idea of epigenetic is involved in plasticity process. These results can open a new management protocols, using the epigenetic signals as potential pollution monitoring tool. We could use these epigenetic marks to recognise the invasive status in a population and determine potential biopollutants

    Poised to Prosper? A Cross-system Comparison of Climate Change Effects on Native and Non-native Species Performance

    Get PDF
    Climate change and biological invasions are primary threats to global biodiversity that may interact in the future. To date, the hypothesis that climate change will favour non-native species has been examined exclusively through local comparisons of single or few species. Here, we take a meta-analytical approach to broadly evaluate whether non-native species are poised to respond more positively than native species to future climatic conditions. We compiled a database of studies in aquatic and terrestrial ecosystems that reported performance measures of non-native (157 species) and co-occurring native species (204 species) under different temperature, CO2 and precipitation conditions. Our analyses revealed that in terrestrial (primarily plant) systems, native and non-native species responded similarly to environmental changes. By contrast, in aquatic (primarily animal) systems, increases in temperature and CO2 largely inhibited native species. There was a general trend towards stronger responses among non-native species, including enhanced positive responses to more favourable conditions and stronger negative responses to less favourable conditions. As climate change proceeds, aquatic systems may be particularly vulnerable to invasion. Across systems, there could be a higher risk of invasion at sites becoming more climatically hospitable, whereas sites shifting towards harsher conditions may become more resistant to invasions

    Temperature Tolerance and Stress Proteins as Mechanisms of Invasive Species Success

    Get PDF
    Invasive species are predicted to be more successful than natives as temperatures increase with climate change. However, few studies have examined the physiological mechanisms that theoretically underlie this differential success. Because correlative evidence suggests that invasiveness is related to the width of a species' latitudinal range, it has been assumed – but largely untested – that range width predicts breadth of habitat temperatures and physiological thermotolerances. In this study, we use empirical data from a marine community as a case study to address the hypotheses that (1) geographic temperature range attributes are related to temperature tolerance, leading to greater eurythermality in invasive species, and (2) stress protein expression is a subcellular mechanism that could contribute to differences in thermotolerance. We examined three native and six invasive species common in the subtidal epibenthic communities of California, USA. We assessed thermotolerance by exposing individuals to temperatures between 14°C and 31°C and determining the temperature lethal to 50% of individuals (LT50) after a 24 hour exposure. We found a strong positive relationship between the LT50 and both maximum habitat temperatures and the breadth of temperatures experience across the species' ranges. In addition, of the species in our study, invasives tended to inhabit broader habitat temperature ranges and higher maximum temperatures. Stress protein expression may contribute to these differences: the more thermotolerant, invasive species Diplosoma listerianum expressed higher levels of a 70-kDa heat-shock protein than the less thermotolerant, native Distaplia occidentalis for which levels declined sharply above the LT50. Our data highlight differences between native and invasive species with respect to organismal and cellular temperature tolerances. Future studies should address, across a broader phylogenetic and ecosystem scope, whether this physiological mechanism has facilitated the current success of invasive species and could lead to greater success of invasives than native species as global warming continues

    Longevity of mass-reared, irradiated and packed male Anopheles arabiensis and Aedes aegypti under simulated environmental field conditions

    Get PDF
    Abstract Background To ensure the success of a mosquito control programme that integrates the sterile insect technique (SIT), it is highly desirable to release sterile males with a maximal lifespan to increase release effectiveness. Understanding sterile male survival under field conditions is thus critical for determining the number of males to be released. Our study aimed to investigate the effect of mass rearing, irradiation, chilling, packing and release time on irradiated male mosquito longevity. Methods Anopheles arabiensis and Aedes aegypti immature stages were mass-reared using a rack and tray system. Batches of 50 males irradiated at the pupal stage were immobilised, packed into canisters and chilled for 6 hours at 6 °C. Mosquitoes were then transferred either in the early morning or early evening into climate chambers set to simulate the weather conditions, typical of the beginning of the rainy season in Khartoum, Sudan and Juazeiro, Brazil for An. arabiensis and Ae. aegypti, respectively. The longevity of experimental males was assessed and compared to mass-reared control males subjected either to simulated field or laboratory conditions. Results The combined irradiation, chilling and packing treatments significantly reduced the longevity of both An. arabiensis and Ae. aegypti under simulated field conditions (P < 0.001). However, packing alone did not significantly reduce longevity of Ae. aegypti (P = 0.38) but did in An. arabiensis (P < 0.001). Overall, the longevity of mass reared, irradiated and packed males was significantly reduced, with the median survival time (days) lower following an early morning introduction (4.62 ± 0.20) compared to an evening (7.34 ± 0.35) in An. arabiensis (P < 0.001). However, there was no significant difference in longevity between morning (9.07 ± 0.54) and evening (7.76 ± 0.50) in Ae. aegypti (P = 0.14). Conclusions Our study showed that sterile mass-reared males have a reduced lifespan in comparison to laboratory-maintained controls under simulated field conditions, and that An. arabiensis appeared to be more sensitive to the handling process and release time than Ae. aegypti. Longevity and release time are important parameters to be considered for a successful area-wide integrated vector control programme with a SIT component

    Marketization in Poland: Stories about changes in materialist and humanist life values

    No full text
    corecore