82 research outputs found

    Continental hyperextension, mantle exhumation, and thin oceanic crust at the continent-ocean transition, West Iberia: New insights from wide-angle seismic

    Get PDF
    Hyperextension of continental crust at the Deep Galicia rifted margin in the North Atlantic has been accommodated by the rotation of continental fault blocks, which are underlain by the S reflector, an interpreted detachment fault, along which exhumed and serpentinized mantle peridotite is observed. West of these features, the enigmatic Peridotite Ridge has been inferred to delimit the western extent of the continent‐ocean transition. An outstanding question at this margin is where oceanic crust begins, with little existing data to constrain this boundary and a lack of clear seafloor spreading magnetic anomalies. Here we present results from a 160 km long wide‐angle seismic profile (Western Extension 1). Travel time tomography models of the crustal compressional velocity structure reveal highly thinned and rotated crustal blocks separated from the underlying mantle by the S reflector. The S reflector correlates with the 6.0–7.0 km s−1 velocity contours, corresponding to peridotite serpentinization of 60–30%, respectively. West of the Peridotite Ridge, shallow and sparse Moho reflections indicate the earliest formation of an anomalously thin oceanic crustal layer, which increases in thickness from ~0.5 km at ~20 km west of the Peridotite Ridge to ~1.5 km, 35 km further west. P wave velocities increase smoothly and rapidly below top basement, to a depth of 2.8–3.5 km, with an average velocity gradient of 1.0 s−1. Below this, velocities slowly increase toward typical mantle velocities. Such a downward increase into mantle velocities is interpreted as decreasing serpentinization of mantle rock with depth

    Expressheart: Web portal to visualize transcriptome profiles of non-cardiomyocyte cells

    Get PDF
    Unveiling the molecular features in the heart is essential for the study of heart diseases. Non-cardiomyocytes (nonCMs) play critical roles in providing structural and mechanical support to the working myocardium. There is an increasing amount of single-cell RNA-sequencing (scRNA-seq) data characterizing the transcriptomic profiles of nonCM cells. However, no tool allows researchers to easily access the information. Thus, in this study, we develop an open-access web portal, Express-Heart, to visualize scRNA-seq data of nonCMs from five laboratories encompassing three species. ExpressHeart enables comprehensive visualization of major cell types and subtypes in each study; visualizes gene expression in each cell type/subtype in various ways; and facilitates identifying cell-type-specific and species-specific marker genes. ExpressHeart also provides an interface to directly combine information across datasets, for example, generating lists of high confidence DEGs by taking the intersection across different datasets. Moreover, ExpressHeart performs comparisons across datasets. We show that some homolog genes (e.g., Mmp14 in mice and mmp14b in zebrafish) are expressed in different cell types between mice and zebrafish, suggesting different functions across species. We expect ExpressHeart to serve as a valuable portal for investigators, shedding light on the roles of genes on heart development in nonCM cells

    Fault-controlled hydration of the upper mantle during continental rifting

    Get PDF
    Water and carbon are transferred from the ocean to the mantle in a process that alters mantle peridotite to create serpentinite and supports diverse ecosystems1. Serpentinized mantle rocks are found beneath the sea floor at slow- to ultraslow-spreading mid-ocean ridges1 and are thought to be present at about half the world’s rifted margins2, 3. Serpentinite is also inferred to exist in the downgoing plate at subduction zones4, where it may trigger arc magmatism or hydrate the deep Earth. Water is thought to reach the mantle via active faults3, 4. Here we show that serpentinization at the rifted continental margin offshore from western Spain was probably initiated when the whole crust cooled to become brittle and deformation was focused along large normal faults. We use seismic tomography to image the three-dimensional distribution of serpentinization in the mantle and find that the local volume of serpentinite beneath thinned, brittle crust is related to the amount of displacement along each fault. This implies that sea water reaches the mantle only when the faults are active. We estimate the fluid flux along the faults and find it is comparable to that inferred for mid-ocean ridge hydrothermal systems. We conclude that brittle processes in the crust may ultimately control the global flux of sea water into the Earth

    Fore-arc deformation and underplating at the northern Hikurangi margin, New Zealand

    Get PDF
    Geophysical investigations of the northern Hikurangi subduction zone northeast of New Zealand, image fore‐arc and surrounding upper lithospheric structures. A seismic velocity (Vp) field is determined from seismic wide‐angle data, and our structural interpretation is supported by multichannel seismic reflection stratigraphy and gravity and magnetic modeling. We found that the subducting Hikurangi Plateau carries about 2 km of sediments above a 2 km mixed layer of volcaniclastics, limestone, and chert. The upper plateau crust is characterized by Vp = 4.9–6.7 km/s overlying the lower crust with Vp > 7.1 km/s. Gravity modeling yields a plateau thickness around 10 km. The reactivated Raukumara fore‐arc basin is >10 km deep, deposited on 5–10 km thick Australian crust. The fore‐arc mantle of Vp > 8 km/s appears unaffected by subduction hydration processes. The East Cape Ridge fore‐arc high is underlain by a 3.5 km deep strongly magnetic (3.3 A/m) high‐velocity zone, interpreted as part of the onshore Matakaoa volcanic allochthon and/or uplifted Raukumara Basin basement of probable oceanic crustal origin. Beneath the trench slope, we interpret low‐seismic‐velocity, high‐attenuation, low‐density fore‐arc material as accreted and recycled, suggesting that underplating and uplift destabilizes East Cape Ridge, triggering two‐sided mass wasting. Mass balance calculations indicate that the proposed accreted and recycled material represents 25–100% of all incoming sediment, and any remainder could be accounted for through erosion of older accreted material into surrounding basins. We suggest that continental mass flux into the mantle at subduction zones may be significantly overestimated because crustal underplating beneath fore‐arc highs have not properly been accounted for

    Variation in styles of rifting in the Gulf of California

    Get PDF
    Author Posting. © Nature Publishing Group, 2007. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 448 (2007): 466-469, doi:10.1038/nature06035.The rifting of continental lithosphere is a fundamental solid-earth process that leads to the formation of rifted continental margins and ocean basins. Understanding of this process comes from observations of the geometry of rifted margins and the magmatism resulting from rifting, which inform us about the strength of the lithosphere, the state of the underlying mantle, and the transition from rifting to seafloor spreading. Here we describe results from the PESCADOR seismic experiment in the southern Gulf of California and present the first crustal-scale images across conjugate margins of multiple segments within a single rift that has reached the stage of oceanic spreading. A surprisingly large variation in rifting style and magmatism is observed between these segments, from wide rifting with minor syn-rift magmatism to narrow rifting in magmatically robust segments. These differences encompass much of the variation observed across nearly all other non-end-member continental margins. The characteristics of magmatic endmember margins are typically explained in terms of mantle temperature. Our explanations for the variation in the Gulf of California, in contrast, invoke mantle depletion to account for wide, magma-poor rifting and mantle fertility and possibly the influence of sediments to account for robust rift and post-rift magmatism in the Gulf of California. These factors may vary laterally over small distances in regions that have transitioned from convergence to extension, as is the case for the Gulf of California and many other rifts.This work was funded by a grant from the U.S. NSF-MARGINS program

    Crustal Azimuthal Anisotropy Beneath the Central North China Craton Revealed by Receiver Functions

    Get PDF
    To characterize crustal anisotropy beneath the central North China Craton (CNCC), we apply a recently developed deconvolution approach to effectively remove near-surface reverberations in the receiver functions recorded at 200 broadband seismic stations and subsequently determine the fast orientation and the magnitude of crustal azimuthal anisotropy by fitting the sinusoidal moveout of the P to S converted phases from the Moho and intracrustal discontinuities. The magnitude of crustal anisotropy is found to range from 0.06 s to 0.54Â s, with an average of 0.25 ± 0.08Â s. Fault-parallel anisotropy in the seismically active Zhangjiakou-Penglai Fault Zone is significant and could be related to fluid-filled fractures. Historical strong earthquakes mainly occurred in the fault zone segments with significant crustal anisotropy, suggesting that the measured crustal anisotropy is closely related to the degree of crustal deformation. The observed spatial distribution of crustal anisotropy suggests that the northwestern terminus of the fault zone probably ends at about 114°E. Also observed is a sharp contrast in the fast orientations between the western and eastern Yanshan Uplifts separated by the North-South Gravity Lineament. The NW-SE trending anisotropy in the western Yanshan Uplift is attributable to fossil crustal anisotropy due to lithospheric extension of the CNCC, while extensional fluid-saturated microcracks induced by regional compressive stress are responsible for the observed ENE-WSW trending anisotropy in the eastern Yanshan Uplift. Comparison of crustal anisotropy measurements and previously determined upper mantle anisotropy implies that the degree of crust-mantle coupling in the CNCC varies spatially

    Constructing the crust along the Galapagos Spreading Center 91.3°–95.5°W : correlation of seismic layer 2A with axial magma lens and topographic characteristics

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): B10310, doi:10.1029/2004JB003066.Multichannel seismic reflection data are used to infer crustal accretion processes along the intermediate spreading Galapagos Spreading Center. East of 92.5°W, we image a magma lens beneath the ridge axis that is relatively shallow (1.0–2.5 km below the seafloor) and narrow (∼0.5–1.5 km, cross-axis width). We also image a thin seismic layer 2A (0.24–0.42 km) that thickens away from the ridge axis by as much as 150%. West of 92.7°W, the magma lens is deeper (2.5–4.5 km) and wider (0.7–2.4 km), and layer 2A is thicker (0.36–0.66 km) and thickens off axis by <40%. The positive correlation between layer 2A thickness and magma lens depth supports the interpretation of layer 2A as the extrusive volcanic layer with thickness controlled by the pressure on the magma lens and its ability to push magma to the surface. Our findings also suggest that narrower magma lenses focus diking close the ridge axis such that lava flowing away from the ridge axis will blanket older flows and thicken the extrusive crust off axis. Flow of lava away from the ridge axis is probably promoted by the slope of the axial bathymetric high, which is largest east of 92.5°W. West of ∼94°W the “transitional” axial morphology lacks a prominent bathymetric high and layer 2A no longer thickens off axis. We detect no magma lens west of 94.7°W where a small axial valley appears. The above changes can be linked to the westward decrease in the magma and heat flux associated with the fading influence of the Galapagos hot spot on the Galapagos Spreading Center.This project was funded by NSF-OCE- 0002189

    Seismic structure of the Endeavour Segment, Juan de Fuca Ridge : correlations with seismicity and hydrothermal activity

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): B02401, doi:10.1029/2005JB004210.Multichannel seismic reflection data collected in July 2002 at the Endeavour Segment, Juan de Fuca Ridge, show a midcrustal reflector underlying all of the known high-temperature hydrothermal vent fields in this area. On the basis of the character and geometry of this reflection, its similarity to events at other spreading centers, and its polarity, we identify this as a reflection from one or more crustal magma bodies rather than from a hydrothermal cracking front interface. The Endeavour magma chamber reflector is found under the central, topographically shallow section of the segment at two-way traveltime (TWTT) values of 0.9–1.4 s (∼2.1–3.3 km) below the seafloor. It extends approximately 24 km along axis and is shallowest beneath the center of the segment and deepens toward the segment ends. On cross-axis lines the axial magma chamber (AMC) reflector is only 0.4–1.2 km wide and appears to dip 8–36° to the east. While a magma chamber underlies all known Endeavour high-temperature hydrothermal vent fields, AMC depth is not a dominant factor in determining vent fluid properties. The stacked and migrated seismic lines also show a strong layer 2a event at TWTT values of 0.30 ± 0.09 s (380 ± 120 m) below the seafloor on the along-axis line and 0.38 ± 0.09 s (500 ± 110 m) on the cross-axis lines. A weak Moho reflection is observed in a few locations at TWTT values of 1.9–2.4 s below the seafloor. By projecting hypocenters of well-located microseismicity in this region onto the seismic sections, we find that most axial earthquakes are concentrated just above the magma chamber and distributed diffusely within this zone, indicating thermal-related cracking. The presence of a partially molten crustal magma chamber argues against prior hypotheses that hydrothermal heat extraction at this intermediate spreading ridge is primarily driven by propagation of a cracking front down into a frozen magma chamber and indicates that magmatic heat plays a significant role in the hydrothermal system. Morphological and hydrothermal differences between the intermediate spreading Endeavour and fast spreading ridges are attributable to the greater depth of the Endeavour AMC and the corresponding possibility of axial faulting.E.V.A. was supported by a National Science Foundation Graduate Research Fellowship, the WHOI-MIT Joint Program, and the WHOI Deep Ocean Exploration Institute. This work was also supported by OCE-0002551 to the Woods Hole Oceanographic Institution, OCE-0002488 to Lamont-Doherty Earth Observatory, and OCE-0002600 to Scripps Institution of Oceanography
    corecore