448 research outputs found

    Weak coupling approximations in non-Markovian Transport

    Full text link
    We study the transport properties of the Fano-Anderson model with a Lorentzian-shaped density of states in one of the electronic reservoirs. We explicitly show that the energy dependence of the density of states can cause non-Markovian effects and that the non-Markovian master equation may fail if these effects are strong. We evaluate the stationary current, the zero frequency current noise and the occupation dynamics of the resonant level by means of a quantum master equation approach within different approximation schemes and compare the results to the exact solution obtained by scattering theory and Green's functions.Comment: 9 pages, 6 figures; due to suggestions of a referee we have added an appendix where our kernel is derived in detail; a few typos are correcte

    A global synthesis of fire effects on pollinators

    Get PDF
    Understanding fire effects on pollinators is critical in the context of fire regime changes and the global pollination crisis. Through a systematic and quantitative review of the literature, we provide the first global assessment of pollinator responses to fire. We hypothesize that pollinators increase after fire and during the early postfire succession stages; however, high fire frequency has the opposite effect, decreasing pollinators. Location: Terrestrial ecosystems, excluding Antarctica. Time period: Data collected from 1973 to 2017. Major taxa studied: Insects (Coleoptera, Diptera, Hymenoptera and Lepidoptera) and a few bird species. Methods: We first compiled available studies across the globe that assessed fire effects on pollinator communities. Then, by means of hierarchical meta-analyses, we evaluated how different fire regime parameters (fire frequency, postfire time and fire type) and habitat characteristics affect the abundance and richness of animals that act as pollinators. We also explored to what extent the responses vary among taxa groups and life history traits of pollinators (sociality system, nest location and feeding specialization), and among biomes. The overall effect size of fire on pollinator abundance and richness across all studies was positive. Fire effect was especially clear and significant in early postfire communities, after wildfires, and for Hymenoptera. Taxonomic resolution influenced fire effects, where only studies at the species/genus and family levels showed significant effects. The main exceptions were recurrent fires that showed a negative effect, and especially wildfire effects on Lepidoptera abundance that showed a significant negative response. Main conclusions: Pollinators tend to be promoted after a wildfire event. However, short fire intervals may threat pollinators, and especially lepidopterans. Given the current fire regime changes at the global scale, it is imperative to monitor postfire pollinators across many ecosystems, as our results suggest that fire regime is critical in determining the dynamics of pollinator communities.Fil: Carbone, Lucas Manuel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Tavella, Julia Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Pausas, Juli G.. Universidad de Valencia; EspañaFil: Aguilar, Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentin

    Dynamic Potential Intensity: An improved representation of the ocean's impact on tropical cyclones

    Get PDF
    To incorporate the effects of tropical cyclone (TC)-induced upper ocean mixing and sea surface temperature (SST) cooling on TC intensification, a vertical average of temperature down to a fixed depth was proposed as a replacement for SST within the framework of air-sea coupled Potential Intensity (PI). However, the depth to which TC-induced mixing penetrates may vary substantially with ocean stratification and storm state. To account for these effects, here we develop a “Dynamic Potential Intensity” (DPI) based on considerations of stratified fluid turbulence. For the Argo period 2004–2013 and the three major TC basins of the Northern Hemisphere, we show that the DPI explains 11–32% of the variance in TC intensification, compared to 0–16% using previous methods. The improvement obtained using the DPI is particularly large in the eastern Pacific where the thermocline is shallow and ocean stratification effects are strong.United States. Department of Energy. Office of Science (part of the Regional and Global Climate Modeling Program)Atlantic Oceanographic and Meteorological Laboratory (base funds

    Multifunctional Polyoxometalate Platforms for Supramolecular Light-Driven Hydrogen Evolution

    Get PDF
    Multifunctional supramolecular systems are a central research topic in light-driven solar energy conversion. Here, we report a polyoxometalate (POM)-based supramolecular dyad, where two platinum-complex hydrogen evolution catalysts are covalently anchored to an Anderson polyoxomolybdate anion. Supramolecular electrostatic coupling of the system to an iridium photosensitizer enables visible light-driven hydrogen evolution. Combined theory and experiment demonstrate the multifunctionality of the POM, which acts as photosensitizer/catalyst-binding-site[1] and facilitates light-induced charge-transfer and catalytic turnover. Chemical modification of the Pt-catalyst site leads to increased hydrogen evolution reactivity. Mechanistic studies shed light on the role of the individual components and provide a molecular understanding of the interactions which govern stability and reactivity. The system could serve as a blueprint for multifunctional polyoxometalates in energy conversion and storage

    The effect of uncertain river forcing on the thermohaline properties of the North West European Shelf Seas

    Get PDF
    Modeling studies and observations show that the thermohaline properties of the North West European Shelf Seas (NWESS) are sensitive to surface wind and heat flux forcing, as well as river outflows that transport fresh water from land to the ocean. In previous studies, it was assumed that the variability of the thermohaline properties in response to river outflow could be adequately sampled with a high-resolution, submesoscale permitting, long-term (i.e., 30-year) deterministic hindcast. In this study, we assume that the statistical distribution of the river forcing, rather than the time series of forcing itself, is adequately constrained by a 28-year history (1991 to 2018) of river forcing created specifically for our domain. In this way, we created an ensemble of 10 lower-resolution ( 7-km), short-term (i.e., 2.5 years) hindcast models that are forced with randomly perturbed river outflows and an ensemble of surface fluxes from the 10-member ECMWF ERA5 reanalysis (the ‘Test’ ensemble) as well with a companion ensemble that is forced with the ERA5 surface forcing fluxes but unperturbed river outflows (the ‘Base’ ensemble) for the June 2016 through December 2018 time period. In both ensembles, the modeled evolution of 25-hour averaged (to partially filter out tides) temperature and salinity is realistic with peaks in summer for sea surface temperature and in winter for salinity, and annual amplitudes that are comparable to those found in other studies of the NWESS. The increased mean and standard deviation of the sea surface and bottom salinity in the Test ensemble are partly an artifact of the assumption that the errors in river forcing have a log-normal distribution that mimics the episodic nature of river outflow with a positive mean and an asymmetrical shape with a long tail towards large values. For surface density, the standard deviation in the Test ensemble was below 0.5 kg/m3, covering an areal extent larger than that for the Base ensemble throughout the year. The annual cycle of the areal extent of density in that range had a peak in summer and minima in winter, in phase with that of the river outflow forcing. Overall, the effect of uncertain river forcing on the thermohaline properties in this study is small. In order to understand the true impact of river forcings, better temporal and spatial observations of river outflow are needed

    Human Intrinsic Factor Expression for Bioavailable Vitamin B12 Enrichment in Microalgae

    Get PDF
    Dietary supplements and functional foods are becoming increasingly popular complements to regular diets. A recurring ingredient is the essential cofactor vitamin B12 (B12). Microalgae are making their way into the dietary supplement and functional food market but do not produce B12, and their B12 content is very variable. In this study, the suitability of using the human B12-binding protein intrinsic factor (IF) to enrich bioavailable B12 using microalgae was tested. The IF protein was successfully expressed from the nuclear genome of the model microalga Chlamydomonas reinhardtii and the addition of an N-terminal ARS2 signal peptide resulted in efficient IF secretion to the medium. Co-abundance of B12 and the secreted IF suggests the algal produced IF protein is functional and B12-binding. Utilizing IF expression could be an efficient tool to generate B12-enriched microalgae in a controlled manner that is suitable for vegetarians and, potentially, more bioavailable for humans

    Neonatal Fc Receptor Regulation of Lung Immunoglobulin and CD103+ Dendritic Cells Confers Transient Susceptibility to Tuberculosis

    No full text
    The neonatal Fc receptor (FcRn) extends the systemic half-life of IgG antibodies by chaperoning bound Fc away from lysosomal degradation inside stromal and hematopoietic cells. FcRn also transports IgG across mucosal barriers into the lumen, and yet little is known about how FcRn modulates immunity in the lung during homeostasis or infection. We infected wild-type (WT) and FcRn-deficient (fcgrt(−/−)) mice with Pseudomonas aeruginosa or Mycobacterium tuberculosis to investigate whether recycling and transport of IgG via FcRn influences innate and adaptive immunity in the lung in response to bacterial infection. We found that FcRn expression maintains homeostatic IgG levels in lung and leads to preferential secretion of low-affinity IgG ligands into the lumen. Fcgrt(−/−) animals exhibited no evidence of developmental impairment of innate immunity in the lung and were able to efficiently recruit neutrophils in a model of acute bacterial pneumonia. Although local humoral immunity in lung increased independently of the presence of FcRn during tuberculosis, there was nonetheless a strong impact of FcRn deficiency on local adaptive immunity. We show that the quantity and quality of IgG in airways, as well as the abundance of dendritic cells in the lung, are maintained by FcRn. FcRn ablation transiently enhanced local T cell immunity and neutrophil recruitment during tuberculosis, leading to a lower bacterial burden in lung. This novel understanding of tissue-specific modulation of mucosal IgG isotypes in the lung by FcRn sheds light on the role of mucosal IgG in immune responses in the lung during homeostasis and bacterial disease
    corecore