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Abstract

Modeling studies and observations show that the thermohaline properties of
the North West European Shelf Seas (NWESS) are sensitive to surface wind
and heat flux forcing, as well as river outflows that transport fresh water from
land to the ocean. In previous studies, it was assumed that the variability of
the thermohaline properties in response to river outflow could be adequately
sampled with a high-resolution, submesoscale permitting, long-term (i.e., 30-
year) deterministic hindcast. In this study, we assume that the statistical
distribution of the river forcing, rather than the time series of forcing itself,
is adequately constrained by a 28-year history (1991 to 2018) of river forcing
created specifically for our domain. In this way, we created an ensemble of 10
lower-resolution (≈7-km), short-term (i.e., 2.5 years) hindcast models that
are forced with randomly perturbed river outflows and an ensemble of surface
fluxes from the 10-member ECMWF ERA5 reanalysis (the ‘Test’ ensemble)
as well with a companion ensemble that is forced with the ERA5 surface
forcing fluxes but unperturbed river outflows (the ‘Base’ ensemble) for the
June 2016 through December 2018 time period.

In both ensembles, the modeled evolution of 25-hour averaged (to par-
tially filter out tides) temperature and salinity is realistic with peaks in sum-
mer for sea surface temperature and in winter for salinity, and annual am-
plitudes that are comparable to those found in other studies of the NWESS.
The increased mean and standard deviation of the sea surface and bottom
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salinity in the Test ensemble are partly an artifact of the assumption that the
errors in river forcing have a log-normal distribution that mimics the episodic
nature of river outflow with a positive mean and an asymmetrical shape with
a long tail towards large values. For surface density, the standard deviation
in the Test ensemble was below 0.5 kg/m3, covering an areal extent larger
than that for the Base ensemble throughout the year. The annual cycle of
the areal extent of density in that range had a peak in summer and minima in
winter, in phase with that of the river outflow forcing. Overall, the effect of
uncertain river forcing on the thermohaline properties in this study is small.
In order to understand the true impact of river forcings, better temporal and
spatial observations of river outflow are needed.

Keywords: regional modelling, river forcing, shelf seas, operational
forecast, NEMO, Northwest European Shelf Seas (20W to 20E, 40N to
65N), temperature and salinity

1. Introduction

The world’s shelf seas comprise a relatively small area of the earth’s ocean
yet support a disproportionately large fraction of carbon sequestration, pri-
mary production, and commercial fisheries (Orton & Jay, 2005; Ridenour
et al., 2019; Wakelin et al., 2020; Wu et al., 2021; Marta-Almeida et al.,5

2021; Sun et al., 2021; Skákala et al., 2022). The North-West European Shelf
Seas have been studied extensively and shown to be sensitive to horizontal
resolution (O’Dea et al., 2012, 2017; Graham et al., 2018), vertical resolution
(Wise et al., 2022), the parameterization of sub-gridscale vertical turbulent
mixing (Luneva et al., 2019), feedbacks between biogeochemistry and light10

attenuation schemes (Skákala et al., 2022), and tidally pulsed river outflow
forcing (O’Dea et al., 2017). More generally, models with very high resolution
(10s to 100s of meters) and idealized bathymetry, show that plume dynamics
can be significantly altered via interactions with surface waves (Rodriguez
et al., 2018; Moghimi et al., 2019), coalescence with nearby plumes (War-15

rick & Farnsworth, 2017), and the presence of a pre-existing coastal current
(Jamshidi & Johnson, 2019b,a). For a comprehensive review of the dynamics
of shelf seas, see Huthnance et al. (2022) and references therein.

Regions of freshwater input (especially in near-shore regions, also called
ROFI) are very important to the biota, especially where shelf sea water is20

oligotrophic, because rivers transport biologically important nutrients (in-
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cluding iron, phosphate, and nitrogen), along with land-borne contaminants
and sediments. To date, observations of river inflow have been spatially
and temporally sparse. At the same time, the ability of a single prognos-
tic model to accurately forecast the shelf sea state is constrained by uncer-25

tainties in sub-surface parameterizations, boundary and surface forcing, the
bottom drag coefficient, and by the sparseness of temperature and salinity
observations, particularly below the surface. Most of the theoretical and lab-
oratory experiments agree on the basic plume dynamics and structure (e.g.,
Horner-Devine et al., 2015) including the introduction of several nondimen-30

sional scales that help categorize individual river outflow types (e.g., Garvine,
1995; Horner-Devine et al., 2006; Poggioli & Horner-Devine, 2018; Jamshidi
& Johnson, 2019a,b; Basdurak et al., 2020; Spicer et al., 2021). Our ≈7-km
grid domain of the NWESS does not resolve all of the length scales that are
present in a plume wake, nor the full set of small rivers (e.g., with outlets35

in UK) . Specifically there are no internal tides in our model such as found
in mesoscale-permitting models of the NWESS (Guihou et al., 2018). How-
ever, there is considerable value in understanding the effect of uncertain river
forcing in our AMM7 domain, as part of a broader effort considering those
of other uncertain forcings (as mentioned above), especially as our model is40

an operational ocean forecasting model used at the UK Met Office. If river
forcing is important, then we will need to increase the density of observations.

The purpose of this study is to understand the impact of variations in
river flow pulses, as well as surface flux forcings, on the temperature and
salinity in the North West European Shelf Seas (NWESS). The NWESS have45

been studied extensively (e.g., Huthnance et al., 2022), but the relationship
between thermal and haline response to surface river fluxes needs to be better
understood. Here, we investigate the ensemble statistics from a set of realistic
prognostic models. We explore the effects of uncertain surface forcing fluxes
and river forcing on the temperature and salinity. We use a 28-year history50

(1991 through 2018) of daily river inflow (from a total of 172 river inlets) to
build an ensemble of river forcings with realistic statistics. These ensembles
are used to force a 7-km configuration of the NWESS, using the Nucleus for
European Modeling of the Ocean (NEMO) framework (Madec, 2008). We set
up two 10-member ensembles which are forced by an ensemble of 10 realistic,55

prescribed surface flux forcing from the ERA5 ensemble of surface fluxes
(Hersbach et al., 2020). In the ‘Base’ ensemble, each model was forced with
unperturbed river forcing from a 28-year outflow history created specifically
for our domain (referred to as NOWMAPS, for details see section 3, the
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subsection entitled ‘Observational River Database’). A companion ensemble60

(referred to as the ‘Test’ ensemble) was modified to include the addition of
realistic flow pulses in river forcing with the same statistics (i.e., standard
deviation and mean) as in the NOWMAPS river history.

The ‘Base’, ensemble members would only be expected to exhibit realistic
spread in the evolution of the temperature and salinity fields, particularly65

below the mixed layer or for salinity at any depth. Work is ongoing at the
Met Office to include additional perturbations to produce an ensemble with
realistic spread (e.g., including stochastic model physics schemes and lateral
boundary conditions from a global ensemble), as done int the Met Office
global ensemble system. We prioritized an investigation of river forcings,70

because the effects of other uncertain forces were known to induce biases in
the ocean state (e.g., Luneva et al., 2019). Our river ensemble is a preliminary
framework being used here to perform sensitivity experiments, and has not
been optimized for any specific variable.

2. Model Details75

The ensemble members employ version 3.6 of the NEMO (Madec, 2008)
and are configured for the 7-km resolution, 51 (terrain following) depth layer,
Atlantic Margin Model domain (AMM7, shown in Fig. 1; O’Dea et al.,
2012, 2017) during the June 2016 through December 2018 time period. Note
that in this paper, the analysis is based only on December 2017 through80

December 2018 to allow the regional model ocean physics to adjust to the
surface forcing.

The bathymetry of our domain (shown Fig. 1) is spatially variable, sup-
porting a wide range of hydrographic conditions from year-round tidally
mixed vertical homogeneity to a seasonally stratified water column in spring85

and/or summer. The geographic positioning of the United Kingdom (also
referred to as UK) allows the exchange of water between the shelf seas and
the relatively warm, salty Atlantic water on the west, and the relatively cold,
fresh water from the Skagerrak and German Bight to the east. This al-
lows the opportunity for different types of instabilities to develop, including90

barotropic, baroclinic, symmetric, frontogenesis, and shear-driven mixing.
It is noteworthy that the spatial density difference (from east to west)

would have been larger if not for compensating effects (for density) of tem-
perature and salinity in both of these water masses. However, the full spatial
and temporal range of dynamics is not resolved with our 7-km resolution,95
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Figure 1: The bottom bathymetry of the North West European shelf seas. Rivers are
grouped into 22 separate catchments where each river in a catchment has a correlation
coefficient larger than 0.3. The river catchments each have a unique marker and color.
Depths below 200 m are masked out.
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as the first baroclinic Rossby radius is about 6 km on the shelf (Chelton
et al., 1998; Holt et al., 2017). Specifically, a field of energetic internal tides
with peak temporal variability at quarter- and semi-diurnal as well as diur-
nal timescales as found in observations is absent in our model (Guihou et al.,
2018).00

Vertical turbulent mixing is parameterized using the generic length scale
scheme (O’Dea et al., 2017; Luneva et al., 2019). The lateral and surface
boundary conditions, tidal forcing, and harmonic/biharmonic viscosities and
other model setup details are the same as in King et al. (2018).

3. Ensemble Setup05

Two 10-member ensembles are set up to investigate the effect of uncertain
river forcing on the thermohaline properties of the NWESS. Both ensembles
are forced with the prescribed, 3-hourly surface heat and wind fluxes, atmo-
spheric pressure, and precipitation minus evaporation from the 10-member,
≈31-km resolution, ERA5 ensemble described in Hersbach et al. (2020), so10

that there is a one-to-one correspondence between the Base and Test ensem-
ble members with identical forcing.

The first (‘Base’) ensemble is forced with unperturbed NOWMAPS river
outflow history, whereas its’ companion (‘Test’), includes the addition of
ensemble-member dependent random, daily, realistic perturbations to the15

river outflow time series, as described below. Both ensembles adopt the
framework from an evolved prognostic (i.e. non-data assimilative), tidally-
forced, physics-only version of the United Kingdom Meteorological Office
FOAM-Shelf v9 ensemble (referred to as the UK Met Office ensemble O’Dea
et al., 2017; King et al., 2018).20

Observational River Database. The NOWMAPS river discharge data (with
172 outlets) are produced from an updated version of the river dataset used
in Lenhart et al. (2010) combined with the climatology of daily discharge
data from the Global River Discharge Data Base (Vörösmarty et al., 2000)
and from data prepared by the Centre for Ecology and Hydrology as used25

by Young & Holt (2007). In other observational data sets developed for
higher resolution models, there were over 300 river outflow points and larger
total discharge overall (O’Dea et al., 2017; Graham et al., 2018). The treat-
ment of two or more closely spaced (i.e., subgridscale) small rivers as one
outlet likely affects the physical evolution of the buoyant plume. The two30
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hydrographic settings can have very different physics (Warrick & Fong, 2004;
Warrick & Farnsworth, 2017). On days where observations were unavailable,
the NOWMAPS river outflow defaults to the climatological annual cycle of
the available data. It is worth noting that in 2018, when the NOWMAPS
river history was compiled, the observational database was incomplete. Of35

particular note, there were no available data for rivers sourced in the United
Kingdom after 2014. This is one reason why the spatially summed river
records for 2017 and 2018 are, relative to other years, close to the climatolog-
ical mean (Fig. 2). When this is the case, the variability in the NOWMAPS
dataset is likely underestimated.40

The 172 river outflow timeseries in the NOWMAPS reanalyses are not
strictly statistically independent from one another. Each river belongs to
one of 18 river districts (as shown in Fig. 1 of Lane et al., 2022), and can
be grouped into 22 statistically independent catchments where the temporal
cross-correlation coefficient between any two river outflow records within a45

catchment is ≥0.3. This suggests that the number of degrees of freedom in
the NOWMAPS river database – about 20 – is much smaller than the number
of rivers. The largest catchment includes the Cornwall peninsula (red crosses
in Fig. 1), an area broadly covering the region from 6W to 1.1W and 50N to
51.6N with 26 rivers.50

River Perturbations. For the Base ensemble, each member is forced with
river outflow from a new daily, 28-year observational reanalysis (1991-2018)
created specifically for the AMM7 domain at the Plymouth Marine Labora-
tory as part of the NOWMAPS project. The Test ensemble is forced with
realistically perturbed NOWMAPS rivers.55

We assume that the daily river runoffs have a log-normal distribution (in
time) as found previously (Bowers et al., 2012), with a very long positive tail
towards large numbers to represent the episodic nature of storms (1-3 days)
as well as a seasonally-varying nonzero mean. The perturbed river runoff r′
is calculated in Eq. 1

log(r′) = log(r) + log(r′′(σ, µ)) (1)

where r is the observed river runoff and r′′ is a sample from a (reproducible)
random variable with mean µ and standard deviation σ defined for each river
and year day, as shown for the Rhine River in Fig. 3. The random seed is
uniquely determined for each river, ensemble member, and year day. This
allows us to assess the effect of uncertain river forcing on the hydrography by60
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direct differencing of the Test and Base ensemble members. In each ensem-
ble, the first member is forced with the unperturbed NOWMAPS river runoff
reanalysis, which means that they are identical, and are therefore omitted
from comparisons between the two ensembles. As a proxy for each individual
river, we demonstrate that the total daily outflow (spatially summed at each65

timestep with N=172) has a strong seasonal cycle with a maximum in the
winter, a secondary (precipitation associated) peak in spring, and a minimum
in summer as well as an approximate log-normal distribution (Fig. 2). No-
tably, the seasonal mean in the total daily river outflow is roughly six months
out of phase with that of solar insolation. This implies that freshwater input70

and solar insolation have competing effects on the sea surface density in win-
ter and summer, but complimentary effects during the transitional seasons.

Justification for River Perturbations. The arithmetic mean and standard de-
viation of the total outflow have strong seasonal cycles (Bowers et al., 2012).75

As is characteristic for log-normal distributions, that of the year-day mean
of the total river runoff (relative to the daily mean) is uneven with a longer
tail above the mean than below it. The mean auto-decorrelation time scale
for the total river outflow is 2 days. However, the mean auto-decorrelation
time scale for each river (with a 0.5 criterion) is 7 to 15 days. We subsam-80

ple the total river outflow every 2 days after dividing the time series into
4 90-day periods. The distribution (i.e., frequency histogram) of the total
river outflow is statistically indistinguishable to that of a companion sam-
ple (Nsamp=10000) with the same mean and standard deviation (with a
Kolmogorov-Smirnov statistic of 0.03 and a p-value ≥ 0.05). The standard85

deviation of the river outflow (shown in Fig. 3 for the Rhine river) as a func-
tion of year-day (based on 28 samples per day) has a strong annual cycle,
but is also very variable at daily timescales (Fig. 3). This is what we would
expect given our small sample size (Fig. 3). Given the 15-day decorrelation
timescale, we take a straight 15-day average of the standard deviation time-90

series (so that there are 420 15-day values with N=28) to reduce and smooth
the temporal variability in the river flow, while maintaining the annual cy-
cle. We then fit a Gaussian distribution to the histograms of the logarithm
of river outflow for 420 15-day records in each month, regardless of year.

As a demonstration of the annual variability of the statistics of the 15-day95

cycle, we show seasonal means (for the Rhine) of the distribution (Fig. 4)
which have been subsampled on 30-day time scales, so that they are tempo-
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Figure 2: The timeseries of the total (spatially-summed) river runoff as a function of year
day for the 28 year period from 1993 to 2018 in black, as well as the 80% confidence
intervals (N=28) in dashed red lines, the climatological annual cycle (magenta circles),
the 2017 record in red circles, and the 2018 record in blue circles.

rally statistically independent of one another. The distribution is widest in
the winter, narrowest in the summer, and somewhere in-between during the
transitional fall and spring season. The rivers are not perfectly log-normally00

distributed (see Fig. 3), and might be equally modeled as a power distribu-
tion (Bowers et al., 2012).

4. Characterization of On-shelf Seasonal Cycle in Base Ensemble

First we present output from the Base ensemble. We begin by considering
the on-shelf (where bottom depth is ≤ 200-m) seasonal mean of a monthly05

subset of partially tidally-filtered 25-hour records from the Base ensemble

9
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Figure 3: Time series of actual standard deviation (N=28 years) of runoff for the River
Rhine along with the smoothed linear fit.

(Fig. 5 and 6). The thermohaline properties of the NWESS have realistic
pronounced seasonal cycles in all of the ensemble members.

Density Calculation. Density was calculated offline from 25-hour averaged
temperature and salinity using the Lindström et al. (2010) UNESCO equa-10

tion of state, before calculation of the standard deviation in the ensemble
dimension.

Temperature. In winter, the water is vertically homogeneous for salinity and
temperature. In spring, there is an increase in SST (of about 2◦C) in keeping
with increased day length. In summer, the surface temperatures range from15

around 12◦C to 19◦C, with the shallow waters of the NWESS remaining
vertically homogeneous. The deeper waters exhibit a layer of warm surface

10
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Figure 4: Seasonal distributions of the logarithm of river flow to fit the observations.

water overlying the tidally-mixed interior. As fall approaches, the surface
mixed layer is then eroded as day length decreases and storms increase in
frequency and intensity. Spring and fall are transitional periods with warm20

water (south of 55◦N) along the southwest shelf break.

Salinity. In all seasons, there is salty water on the west side of the UK
(Atlantic shelf) and in the Irish Sea, and relatively fresh water fed by rivers.
Other sources of fresh water include (local) precipitation and transport through
the Baltic Boundary. In general agreement with observations and models,25

variability in SSS that is attributed to wind forcing uncertainty is large on
the break between the NWESS and the Norwegian Trench (Davies & Heaps,
1980; Pingree & Griffiths, 1980; Ikeda et al., 1989). The annual cycle of SSS
in the Base ensemble is relatively small or unremarkable (Fig 6). The shallow,
year-round vertically-homogeneous English Channel that connects the east30

and west water masses in the south of the domain has intermediate salinity

11
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Figure 5: Seasonally and temporally averaged 25-hour ensemble mean of sea surface tem-
perature (SST) for Base ensemble. Upper left: for winter (DJF). Upper right: for spring
(MAM). Lower left: for summer (JJA). Lower right: for fall (SON).

with an east west salinity difference of about 7 ppt. Around the UK, a swath
of shallow fresh water from river inflows increases in spring and summer.
This probably relates to the formation of a barrier layer with stratification –
specifically, there is westward movement of the 34.6-ppt halocline.35

Density of Sea Water. At different times of year, the temperature and salin-
ity have additive or compensating effects on the density. This is because
the annual cycle for temperature is highly variable relative to that for salin-
ity. In winter, cold salty waters have additive effects on the density in the
western part of the domain but competing effects in the east, whereas the40

opposite is true in summer. During the transitional seasons, the effects of salt
and temperature are compensatory. Nevertheless, when expressed in density
equivalent units (i.e., normalized by the temperature expansion or haline con-
traction coefficient), the differences in the two ensembles are almost entirely

12
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Figure 6: Seasonally and temporally averaged 25-hour ensemble mean of sea surface salin-
ity (SSS) for Base ensemble. Upper left: for winter (DJF). Upper right: for spring (MAM).
Lower left: for summer (JJA). Lower right: for fall (SON).

attributable to salinity. This is not surprising, considering that any tempera-45

ture difference between the two ensembles would likely be a secondary effect
(from, e.g., the combination of a too shallow barrier layer and subsequent
insufficient vertical mixing), whereas the salinity is perturbed directly.

The seasonal cycle of sea surface and bottom salinity serves as a proxy
for the degree of mixing (not shown). In winter and spring the water column50

is vertically homogeneous due to tidal mixing. In summer and fall the north
part of the North Sea (as far south as 55◦N) is weakly stratified with a fresh,
warm (i.e., barrier) layer on top.

5. Characterization of On-Shelf Differences between Ensemble Means

The difference in the ensemble means for SSS and SST in January 201855

and July 2018 show that, as expected, perturbed river outflows predomi-

13
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Figure 7: Anomaly of 25-hour-averaged ensemble mean of sea surface salinity (SSS with
units ppt) and sea surface temperature (SST with units C) between the Test and Base
ensembles: Test minus Base. a) SSS for January b) SSS for July c)SST for January d)
SST for July.

nantly affect the salinity, without changing the temperature by much (Fig.
7). The amplitude of this anomaly is on the order of 0.1-0.2 ppt. Interest-
ingly, the anomaly in the ensemble mean of SST has a patchy spatial pattern
across the domain, whereas the SSS anomaly is tightly confined near the60

coast.

6. Characterization of On-shelf Variability to Pulsed River Forcing

Next, we present the results of perturbing the river inflows. We focus our
discussion on the variability of temperature and salinity in January, and July,
of 2018, as representative as the extrema (or amplitude) of the annual cycle.65

Because we started the model in June, 2016, some of the summertime surface
effects from the previous year (i.e., 2017) will have had the opportunity to be
mixed to depth by July 2018. We consider the standard deviation for each of
these variables at the sea surface and bottom (Figs. 8 and 9 for temperature,
and Figs. 10 and 11 for salinity).70

Overall, the magnitude of the standard deviation fields for temperature

14
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Figure 8: January 2018 standard deviation of 25-hour-averaged sea surface (top row) and
bottom (bottom row) temperature for Base ensemble (left column) and the difference
between the Test and base ensembles (right column)

and salinity are of the same order in the Base and Test ensembles (comparing
the left and right columns of each of Figs. 8 through 11). In winter, the sur-
face and bottom statistics are very similar (compare top and bottom panels
in Fig. 8 and in Fig. 10), whereas they have more pronounced differences75

in July (compare top and bottom panels in Fig. 9 and in Fig. 11). By
consideration of the direct differences of the standard deviation between the
Test and Base ensembles, we can gauge the impact of perturbing rivers on
the statistics of the thermohaline properties of the NWESS.

Temperature. In winter, the effect of perturbing river inflow on the variabil-80

ity of the temperature field is on the order of 0.15◦C at both the surface and
the bottom, as one would expect for a vertically homogeneous, tidally mixed
basin (see colorbars for left panels in Fig. 8). The effect of additionally
perturbing rivers results in increased variability in some areas along the west
coast of Scotland and the west coast of western Europe (right columns of85

Fig. 8). Variability of sea surface temperature in the vicinity of the Norwe-
gian trench shelf can be either larger or smaller in the two ensembles. The

15
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Figure 9: July 2018 standard deviation of 25-hour-averaged sea surface (top row) and
bottom (bottom row) temperature for Base ensemble (left column) and the difference
between the Test and Base ensembles (right column)

following summer, the standard deviations for temperature in the Test and
Base ensembles are enhanced, particularly in the southern North Sea in the
region of the west coast of Germany.90

Salinity. Year round there is a freshwater anomaly between 0 and 0.2 ppt in
the ensemble mean SSS for the Test ensemble relative to that in the Base
ensemble (Fig. 7), accompanied by seasonal variability of comparable mag-
nitudes but different spatial patterns (see left panels of Fig. 10).

Of possible evidence of summertime stratification, the region of the shelf95

seas with the largest standard deviation for salinity is at the surface, along
the slope shelf of the Norwegian trench (Fig. 11). This surface peak is not
present at the shelf sea floor. In general, the spatial patterns of the freshwater
anomalies in the mean have maxima near coastlines of the UK, Ireland,
or western Europe (starting northward of 45◦N) just to the north of the00

border between Spain and France, decaying in in the offshore direction. These
characteristics likely reflect the fact that the river inflow perturbations are
drawn from a log-normal distribution. The assumption that the river inflows

16
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Figure 10: January 2018 standard deviation of 25-hour-averaged surface and bottom SSS
for Base ensemble.

have a log-normal distribution conserves natural variability but not volume
of seawater. The patterns in both the surface and bottom anomalies are05

tightly constrained to the coast of the UK and the European shelf seas. This
is likely, in part, an artifact of the combination of low horizontal resolution
that inadequately resolves the dynamics of the river plumes, forcing them
to be surface advected (Horner-Devine et al., 2015; Yankovsky & Chapman,
1997) and to contribute to a (horizontally) thin geostrophic coastal current,10

as suggested in (Graham et al., 2018), and in part due to the fact that
standard deviation of freshwater input of rivers is largest at the coastal river
outlets (shown in Fig. 1). The percentage of variability in the anomaly
between the Test and Base ensembles relative to the Base ensemble ranges
from zero to 20%. In winter there is virtually no difference in the hydrography15

because the water column is vertically homogeneous. The largest values of
the fractional variability are in spring and summer when there is appreciable
near-surface vertical stratification.

Density. Over much of the domain, the standard deviation in surface and
bottom density is below 0.05 kg/m3 (surface map shown in Fig. 12). How-20

17
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Figure 11: Jul 2018 of 25-hour-averaged surface (top panels) and bottom (bottom panels)
salinity for Base ensemble (left panels) and the anomaly in STD between the Test and
Base ensembles (right panels).

ever, there are regions where the standard deviation in density is as high as
0.5 kg/m3, especially in July when stratification is at a maximum for both
salinity and temperature. The annual cycle of the total (spatially-summed)
area where standard deviation in density is in the range 0.05 to 0.5 kg/m3
is shown in Fig. 13. This measure shows that there is a larger area of sea25

surface variability in density in the Test, than in the Base, ensemble. No-
tably we consider it a metric that indicates the differing spatial extents of
density variability for each ensemble. In both ensembles, the time series of
the surface areal density variability index has maxima in June or July and
minima in winter, with amplitudes (maximum minus minimum) of 0.19%30

and 0.28% in the Base and Test ensembles (Fig, 13).

7. Discussion

To put our work in context with other studies, in the following, we will
compare our ensemble statistics for SSS and SST with those from 30-year
non-data assimilating deterministic models on the AMM7 grid and also the35
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Figure 12: Standard deviation of 25-hour-averaged surface density for Jan 2018 (top row)
Jul 2018 (bottom row) standard deviation in the Base (left column) and Test (right col-
umn) ensembles. Regions with a standard deviation below 0.05 kg/m3 are masked out.

mesoscale-resolving AMM15 grid. From the first comparison, we will show
that there is a need for higher temporal and spatial density of river outflow
observations. From the second comparison, we will conclude that the reso-
lution of internal tides in the AMM15 domain does not dramatically reduce
the bias in the temporal mean for SSS and SST. The lack of a significant40

decrease in biases in SSS and SST on the 1.5-km grid will suggest that res-
olution of the field of internal tides – which represent episodic short length-
and time-scales – does not affect the associated biases by much. This could
indicate that most of the mixing in the AMM15 model is in the vertical,
rather than the horizontal, dimension.45

Comparisons with Other Modeling Studies using AMM7 Grid. As part of a
progression of studies, O’Dea et al. (2017) showed that the long-term tem-
poral average of thermohaline properties in a ≈ 12-km deterministic model
of the NWESS had larger biases than those in a companion model on the
AMM7 grid, and Graham et al. (2018) demonstrated that the biases in that50

same AMM7 model were of larger magnitude than those of a mesoscale-
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Figure 13: Annual cycle of percentage total area where the standard deviation of density
is larger than 0.05 kg/m3.

permitting model with ≈1.5-km resolution. Here we assume that the salinity
biases have minimal (temporal) cumulative trend (or drift?) in O’Dea et al.
(2017); Graham et al. (2018), Nonlinear feedbacks could occur via formation
of a barrier layer in summer with too-large freshwater anomaly at the sur-55

face coupled with too little (parameterized sub-gridscale) vertical turbulent
mixing. To the extent that anomalies in our ensemble means for SSS (Fig.
7a and Fig. 7b) and SST (Fig. 7c and Fig. 7d) essentially isolate the effect
of river outflow forcing, we can compare them to the biases in O’Dea et al.
(2017) and Graham et al. (2018) and ask whether they have the appropriate60

size and amplitude to reduce or increase the bias. The answer is that the
range in the magnitude of the anomaly in SSS is about 10% of that in the
seasonal bias shown in Fig. 7 of O’Dea et al. (2017) and that of the inter-
annual mean of Fig. 4 of Graham et al. (2018), while that of the SST is
negligible (ranging between -0.05 and 0.05◦C). Whether or not the bias in65

the means of our anomaly in SSS is of the appropriate sign to reduce biases
is a function of location. Around the United Kingdom, the anomaly of the
(ensemble) mean SSS is of the correct sign to reduce the biases (Fig. 7a and
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Fig. 7b). However, on the west coast of Europe and along the Norwegian
trench, the anomaly in our ensemble mean is of the same sign of the biases70

found in Graham et al. (2018); O’Dea et al. (2017), which, taken together,
would act to increase the bias even further.

Note that these anomalies in the ensemble mean of SSS are likely due to
differences in the river forcing employed in O’Dea et al. (2017) (see their Fig.
3) and the river outflow records for June 2016 through December, 2018 used75

in our study. For instance, in O’Dea et al. (2017), the spatially summed E-
HYPE rivers used to force their AMM7 model were overall 18% larger than
in the CO4 climatology described in O’Dea et al. (2012). Additionally, there
was considerable variability in the spatial pattern of E-HYPE river outflows
relative to the climatology. Particularly there were very large discharges on80

the west coast of Europe, but smaller variability around the east part of the
UK (see their Fig 4), whereas in 2017 and 2018 our river history is similar
to the CO4 climatology (compare our Fig. 2 to Fig. 3 in O’Dea et al.
(2017)). The range of the total freshwater outflow for E-HYPE is between
1.2 and 3.8 m3/s, whereas that for the CO4 climatological forcing between85

0.8 and 2.2 m3/s (see Fig. 3 from (O’Dea et al., 2017)). For comparison,
the range of river outflows in our database are somewhere in-between the
EHYPE database and CO4 climatology (to which it defaults when there is
no available data), with outflows between 0.8 and 5 m3/s, Fig. 2). Thus,
we showed that relative to what was found in O’Dea et al. (2017), smaller,90

random, perturbations in river outflow result in relatively smaller differences
in SSS of around 0.2ppt.

In summary, Graham et al. (2018); O’Dea et al. (2017) found that river
forcing can significantly impact the salinity properties of the ocean over a
long time (i.e., 30-year) period, with SSS differences in the 30-year mean on95

the order of 1ppt (see Fig. 13c of O’Dea et al. (2017)), between models forced
with the E-HYPE river outflows, and those forced with the CO4 river outflow
climatology with otherwise identical setup. This was larger than the effect of
changing the Baltic Boundary condition (see Fig. 13d of O’Dea et al. (2017)).
The importance of rivers for modifying SSS then depends in large part on the00

accuracy of the river outflow history used to force them; clearly, river outflow
histories are currently only poorly constrained by data. Our study, in agree-
ment with others, collectively suggest that we need to increase the temporal
and spatial sampling of rivers in the NWESS. In addition to river outflow,
there are many other forcings that affect the thermohaline properties, that05

should also be considered in tandem. Accordingly, this work is part of a
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larger effort to characterize the effect of other uncertain forcings, such as the
bottom boundary layer drag coefficient or the lateral boundary conditions
for temperature and salinity. The effects of many of these forcings have been
studied separately from one another (e.g., Skákala et al., 2022; Luneva et al.,10

2019). More could be learned from studying their complementary cumulative
effects in an ensemble framework. They are likely responsible for non-linear
feedbacks in the thermohaline properties of the NWESS.

Comments on the choice of horizontal resolution: AMM7 vs. AMM15 Grid.
We can also compare our anomalies in SSS to those in the AMM15 run as15

shown in Figs. 3 and 4 of Graham et al. (2018). Broadly speaking, the
anomalies in the ensemble mean SSS are weaker than the temporal mean in
AMM15. The AMM15 ≈1.5-km mesoscale-resolving grid allows the resolu-
tion of a field of vigorous internal tides not present in AMM7. The advantage
of AMM15 is that it resolves a wider range of dynamics, and presumably also20

has a better representation of the transfer of kinetic energy across length
scales that can occur via nonlinear interactions. Indeed, in a comparison
of observation-based power spectra of thermohaline variability for timeseries
from a group of moorings on the shelf break in the Celtic Sea, with those
from a ≈1.8-km degree regional model of the NWESS (Guihou et al., 2018),25

it was found that the energy peaks ranging between quarter-diurnal and di-
urnal periods were only well resolved in AMM15 (see their Fig. 7). The
advantage of our approach is that the ensemble mean and standard devia-
tion in our SSS and SST fields acknowledges the uncertainty in the forcings
themselves; by comparing our results to AMM15, we can get a sense for the30

relative importance of accurate river forcing to increased horizontal resolu-
tion. In this study, the shorter time period of our model runs reduces any
amount of cumulative drift in the model, which if large, could partially ex-
plain why our anomalies are so much smaller than found previously. In the
AMM15 hindcast, the challenges posed for comparisons with observational35

data are different from those in our short-term model. One key issue is that
the smaller scales resolved tend to be highly energetic and episodic in nature,
which means that if the data and model share a feature (such as vertical un-
dulations of the thermocline) that are spatially or temporally out of phase
with one another, the difference between them can be very large. This is40

a huge problem for ocean data-assimilative forecasts as they move towards
higher resolution.
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8. Conclusions and Future Work

Using a new 28-year (i.e., 1993 through 2018) long daily river runoff his-
tory designed for forcing an ≈7-km model of the North West European shelf45

seas (for the AMM7 or Atlantic Margin Model Domain) in conjunction with
the hindcast version of the UK Met Office operational shelf-seas forecasting
system, we quantified the effect of uncertain river forcing on the thermoha-
line properties in an ensemble of non-assimilative hindcast ocean models for
the December 2017 through December 2018 time period.50

Comparing a 10-member (Base) ensemble with historical river forcing, to
a companion (Test) ensemble that was forced with perturbed river outflows
(drawn from a random distribution with standard deviation and mean equal
to that of the 28-year history) we found only a small effect of uncertain river
forcing on the ensemble mean and standard deviation of SSS of the NWESS55

by considering the direct differences between them for each ensemble mem-
ber. The ensemble mean and standard deviation for SSS both had ranges of
≈0.2ppt, or about 10% that of the 30-year mean from a non-data assimila-
tive deterministic hindcast model on the same grid. The effect on SST was
negligible. The area where sea surface density was in the range between 0.0560

and 0.5kg/m3, was larger in the perturbed ensemble than in the default. We
explained these patterns by large differences in river forcing.

The ensemble framework can be used to calculate sample covariance ma-
trices for implementation in data assimilation. This work is a step toward
a more useful ensemble with realistic spread across different variables which65

has uses in both quantifying forecast errors, and in improving the data as-
similation in operational forecasting systems. Further developments planned
to the Met Office shelf-seas ensemble forecasting systems include introducing
stochastic model physics perturbations, using lateral boundaries from the
global ocean ensemble system, and updating the the surface fluxes to use the70

Met Office atmosphere ensemble.
Work is also planned at the Met Office to use an improved shelf-seas en-

semble within a hybrid ensemble/variational data assimilation scheme which
combines climatological background errors with errors-of-the-day derived from
the ensemble. This framework has been demonstrated in the Met Office75

global ocean forecasting systems and shown to have positive impacts (Lea
et al., 2022).

Further modifications to the data assimilation method currently employed
in both the regional and global ocean models (also known as 3D-var FGAT
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Waters et al., 2015), could include explicit estimation of model biases (cal-80

culated by an ensemble of models) which are later removed. Complementary
efforts to improve assimilation methods in coupled physics- with atmospheric
forcing (King et al., 2019), biology (Skákala et al., 2022), and atmosphere-
land-ocean should continue. Recognizing that the open ocean and shelf seas
have different dynamical regimes, further work is needed in the data assimi-85

lation method application in shallow waters.
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lights 

deled effect of perturbed rivers on hydrography is studied in European shelf sea

 variability of SS density and its area are larger when rivers are randomly pulsed

 area of SS density STD has a seasonal cycle with peaks/minima in summer/win

ative to studies with larger river flows, the river effect on SS density is small

 effect on hydrography depends on very uncertain river forcing; more obs neede
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