69 research outputs found
HECT E3 Ubiquitin Ligase Itch Functions as a Novel Nega
The transcription factor Gli-similar 3 (Glis3) plays a critical role in the generation of pancreatic ß cells and the regulation insulin gene transcription and has been implicated in the development of several pathologies, including type 1 and 2 diabetes and polycystic kidney disease. However, little is known about the proteins and posttranslational modifications that regulate or mediate Glis3 transcriptional activity. In this study, we identify by mass-spectrometry and yeast 2-hybrid analyses several proteins that interact with the N-terminal region of Glis3. These include the WW-domain-containing HECT E3 ubiquitin ligases, Itch, Smurf2, and Nedd4. The interaction between Glis3 and the HECT E3 ubiquitin ligases was verified by co-immunoprecipitation assays and mutation analysis. All three proteins interact through their WW-domains with a PPxY motif located in the Glis3 N-terminus. However, only Itch significantly contributed to Glis3 polyubiquitination and reduced Glis3 stability by enhancing its proteasomal degradation. Itch-mediated degradation of Glis3 required the PPxY motif-dependent interaction between Glis3 and the WW-domains of Itch as well as the presence of the Glis3 zinc finger domains. Transcription analyses demonstrated that Itch dramatically inhibited Glis3-mediated transactivation and endogenous Ins2 expression by increasing Glis3 protein turnover. Taken together, our study identifies Itch as a critical negative regulator of Glis3-mediated transcriptional activity. This regulation provides a novel mechanism to modulate Glis3-driven gene expression and suggests that it may play a role in a number of physiological processes controlled by Glis3, such as insulin transcription, as well as in Glis3-associated diseases
Can eDNA be Used to Locate Shawnee Hills Cavefish Forbesichthys papilliferus?
Traditional stream fish sampling methods, such as seining and electrofishing, are time consuming, expensive, and limited to short stretches of stream. However, the analysis of environmental DNA (eDNA) from water samples promises to be a quick, inexpensive method for detecting fish. The streams of the Land Between the Lakes Recreational Area (LBL) are unique, undisturbed streams which contain many interesting fish species for which little information exists. One such rare species is the Shawnee Hills Cavefish Forbesichthys papilliferus, which is known to exist in a few LBL streams. However, the complete distribution of the Shawnee Hills Cavefish in LBL is not known, and very little information is available to assist with the management and conservation of this rare species. Through backpack electrofishing, cavefish were sampled within 4 LBL streams and tagged with visible implant elastomer (VIE) tags for a mark/recapture study. Each site was sampled for eDNA concurrent with the VIE tagging. Ten cavefish were found at Bear Creek site 1, but none were recaptured so the approximate population size was not able to be calculated. Forty-nine fish were found at Panther Creek site 3, 4 of which were recaptured. The Shawnee Hills Cavefish population size within Panther Creek site 3 was determined to be 203 fish. The mean total length of the cavefish found at the Panther Creek site was 55.4 mm (±1.1 SE, N = 49). The mean total length of the tagged Shawnee Hills Cavefish in Bear Creek was 30.1 mm, (±1.5 SE, N = 10). The mean weight of the Panther Creek population was found to be 1.40g (± 0.20). The mean weight of the Bear Creek population was determined to be 0.24g (± 0.03). Catch per unit of effort (CPUE) for Panther Creek was determined to be 44 fish per hour (±0.12 SE, N = 18). CPUE for Bear Creek was determined to be 8 fish per hour (±0.45 SE, N = 18). The eDNA samples yielded unverifiable positive results from two sites that cavefish were not found at and did not match the positive controls. There were no positive DNA results for either of the sites at which cavefish were collected. However, with the field observations future studies and management actions can be taken to benefit the Shawnee Hills Cavefish
New cytochrome P450 1B1, 1C2 and 1D1 genes in the killifish Fundulus heteroclitus : Basal expression and response of five killifish CYP1s to the AHR agonist PCB126
Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Aquatic Toxicology 93 (2009): 234-243, doi:10.1016/j.aquatox.2009.05.008.Knowledge of the complement of cytochrome P450 (CYP) genes is essential to understanding
detoxification and bioactivation mechanisms for organic contaminants.We cloned three new
CYP1 genes, CYP1B1, CYP1C2 and CYP1D1, from the killifish Fundulus heteroclitus, an
important model in environmental toxicology. Expression of the new CYP1s along with
previously known CYP1A and CYP1C1 was measured by qPCR in eight different organs. Organ
distribution was similar for the two CYP1Cs, but otherwise patterns and extent of expression
differed among the genes. The AHR agonist 3,3_,4,4_,5-pentachlorobiphenyl (PCB126) (31
pmol/g fish) induced expression of CYP1A and CYP1B1 in all organs examined, while CYP1C1
was induced in all organs except testis. The largest changes in response to PCB126 were
induction of CYP1A in testis (~700-fold) and induction of CYP1C1 in liver (~500-fold). CYP1B1
in liver and gut, CYP1A in brain and CYP1C1 in gill also were induced strongly by PCB126
(>100-fold). CYP1C1 expression levels were higher than CYP1C2 in almost all tissues and
CYP1C2 was much less responsive to PCB126. In contrast to the other genes, CYP1D1 was not
induced by PCB126 in any of the organs. The organ-specific response of CYP1s to PCB126
implies differential involvement in effects of halogenated aromatic hydrocarbons in different
organs. The suite of inducible CYP1s could enhance the use of F. heteroclitus in assessing
aquatic contamination by AHR agonists. Determining basal and induced levels of protein and the
substrate specificity for all five CYP1s will be necessary to better understand their roles in
chemical effects and physiology.This study was supported in part by NIH grants JJS (the Superfund Basic Research Program
5P42ES007381 and R01ES015912) and MJJ (K99ES017044-01)
In vivo alternative testing with zebrafish in ecotoxicology
Although rodents have previously been used in ecotoxicological studies, they are expensive, time-consuming, and are limited by strict legal restrictions. The present study used a zebrafish (Danio rerio) model and generated data that was useful for extrapolating toxicant effects in this system to that of humans. Here we treated embryos of the naive-type as well as a transiently transfected zebrafish liver cell line carrying a plasmid (phAhRE-EGFP), for comparing toxicity levels with the well-known aryl hydrocarbon receptor (AhR)-binding toxicants: 3,3',4,4',5-pentachlorobiphenyl (PCB126), 2,3,7,8-tetrachlorodibenzo-p-dioxin, and 3-methylcholanthrene. These toxicants induced a concentration-dependent increase in morphological disruption, indicating toxicity at early life-stages. The transient transgenic zebrafish liver cell line was sensitive enough to these toxicants to express the CYP1A1 regulated enhanced green fluorescent protein. The findings of this study demonstrated that the zebrafish in vivo model might allow for extremely rapid and reproducible toxicological profiling of early life-stage embryo development. We have also shown that the transient transgenic zebrafish liver cell line can be used for research on AhR mechanism studies
Cytochrome P450 1 genes in birds : evolutionary relationships and transcription profiles in chicken and Japanese quail embryos
© The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e28257, doi:10.1371/journal.pone.0028257.Cytochrome P450 1 (CYP1) genes are biomarkers for aryl hydrocarbon receptor (AHR) agonists and may be involved in some of their toxic effects. CYP1s other than the CYP1As are poorly studied in birds. Here we characterize avian CYP1B and CYP1C genes and the expression of the identified CYP1 genes and AHR1, comparing basal and induced levels in chicken and quail embryos. We cloned cDNAs of chicken CYP1C1 and quail CYP1B1 and AHR1. CYP1Cs occur in several bird genomes, but we found no CYP1C gene in quail. The CYP1C genomic region is highly conserved among vertebrates. This region also shares some synteny with the CYP1B region, consistent with CYP1B and CYP1C genes deriving from duplication of a common ancestor gene. Real-time RT-PCR analyses revealed similar tissue distribution patterns for CYP1A4, CYP1A5, CYP1B1, and AHR1 mRNA in chicken and quail embryos, with the highest basal expression of the CYP1As in liver, and of CYP1B1 in eye, brain, and heart. Chicken CYP1C1 mRNA levels were appreciable in eye and heart but relatively low in other organs. Basal transcript levels of the CYP1As were higher in quail than in chicken, while CYP1B1 levels were similar in the two species. 3,3′,4,5,5′-Pentachlorobiphenyl induced all CYP1s in chicken; in quail a 1000-fold higher dose induced the CYP1As, but not CYP1B1. The apparent absence of CYP1C1 in quail, and weak expression and induction of CYP1C1 in chicken suggest that CYP1Cs have diminishing roles in tetrapods; similar tissue expression suggests that such roles may be met by CYP1B1. Tissue distribution of CYP1B and CYP1C transcripts in birds resembles that previously found in zebrafish, suggesting that these genes serve similar functions in diverse vertebrates. Determining CYP1 catalytic functions in different species should indicate the evolving roles of these duplicated genes in physiological and toxicological processes.Funding to MEJ and BB was from the Carl Tryggers Stiftelse and The Swedish Research Council Formas. Funding for BRW and JJS was from the United States National Institutes of Health (National Institute of Environmental Health Sciences), grants R01ES015912 and P42ES007381 to JJS
The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2
Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of coding sequences (CDSs) encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. Thiom. crunogena XCL-2 is unusual among obligate sulfur-oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome
Isolation and functional characterization of a dioxin-inducible CYP1A regulatory region from zebrafish (Danio rerio)
Cytochrome P4501A1 (CYP1A1) is a phase I bio-transformation enzyme involved in the metabolism of xenobiotics via the oxygenation of polycyclic aromatic hydrocarbons (PAHs) including the carcinogen, benzo(a)pyrene. Induction of the CYP1A1 gene is regulated at the transcriptional level and is ligand dependent with the prototypical 2,3,7,8,-tetrachlorodibenzo- p-dioxin (TCDD) being the most potent known inducer of CYP1A1 transcription. This process is mediated by the AHR/ARNT signaling pathway whereby ligand binds AHR in the cytoplasm allowing its translocation to the nucleus where it binds with its hertrodimerization partner, ARNT and subsequently binds DNA at cognate binding sites termed xenobiotic responsive elements (XREs) located in the 5’ flanking region of the CYP1A1 and other genes. The zebrafish (Danio rerio) has recently become an important model system for the study of TCDD-mediated developmental toxicity due to their relative ease of maintaining and breeding, external fertilization, abundant transparent embryos, and sensitivity to TCDD similar to mammalian models. It is therefore essential to characterize the molecular mechanisms of AHR mediated gene regulation in this organism. The upstream flanking region of a putative CYP1A gene from zebrafish was identified by the screening of a PAC genomic library. Sequencing revealed a region which contains 8 putative core xenobiotic response elements (XREs) organized in two distinct clusters. The region between –580 to –187 contains XRE 1-3 while the region between –2608 to –2100 contains XRE 4-8. Only XRE 1, 3, 4, 7, and 8 exhibited TCDD-dependant association of AHR/ARNT complexes when evaluated by gel shift assays. The use of in vitro mutagenesis and Luciferase reporter assays further showed that only XRE’s 4, 7, and 8 were capable of conveying TCDD-mediated gene induction. The role of nucleotides flanking the core XRE was investigated through the use of EMSA and reporter assays. Similar methods were employed on additional transcription factor binding sites identified by in silico analyses revealing two sites conforming to an HNF-3α and CREB motif, respectively, which demonstrate importance to regulation of the gene
Isolation and Functional Characterization of a Dioxin-Inducible CYP1A Regulatory Region From Zebrafish (\u3cem\u3eDanio rerio\u3c/em\u3e)
Cytochrome P4501A1 (CYP1A1) is a phase I bio-transformation enzyme involved in the metabolism of xenobiotics via the oxygenation of polycyclic aromatic hydrocarbons (PAHs) including the carcinogen, benzo(a)pyrene. Induction of the CYP1A1 gene is regulated at the transcriptional level and is ligand dependent with the prototypical 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) being the most potent known inducer of CYP1A1 transcription. This process is mediated by the AHR/ARNT signaling pathway whereby ligand binds AHR in the cytoplasm allowing its translocation to the nucleus where it binds with its hertrodimerization partner, ARNT and subsequently binds DNA at cognate binding sites termed xenobiotic responsive elements (XREs) located in the 5\u27 flanking region of the CYP1A1 and other genes.
The zebrafish (Danio rerio) has recently become an important model system for the study of TCDD-mediated developmental toxicity due to their relative ease of maintaining and breeding, external fertilization, abundant transparent embryos, and sensitivity to TCDD similar to mammalian models. It is therefore essential to vii characterize the molecular mechanisms of AHR mediated gene regulation in this organism.
The upstream flanking region of a putative CYP1A gene from zebrafish was identified by the screening of a PAC genomic library. Sequencing revealed a region which contains 8 putative core xenobiotic response elements (XREs) organized in two distinct clusters. The region between -580 to -187 contains XRE 1-3 while the region between -2608 to -2100 contains XRE 4-8. Only XRE 1, 3, 4, 7, and 8 exhibited TCDD-dependant association of AHR/ARNT complexes when evaluated by gel shift assays. The use of in vitro mutagenesis and Luciferase reporter assays further showed that only XRE\u27s 4, 7, and 8 were capable of conveying TCDD-mediated gene induction. The role of nucleotides flanking the core XRE was investigated through the use of EMSA and reporter assays. Similar methods were employed on additional transcription factor binding sites identified by in silico analyses revealing two sites conforming to an HNF- 3α and CREB motif, respectively, which demonstrate importance to regulation of the gene
Isolation and Functional Characterization of a Dioxin-Inducible CYP1A Regulatory Region From Zebrafish (\u3cem\u3eDanio rerio\u3c/em\u3e)
Cytochrome P4501A1 (CYP1A1) is a phase I bio-transformation enzyme involved in the metabolism of xenobiotics via the oxygenation of polycyclic aromatic hydrocarbons (PAHs) including the carcinogen, benzo(a)pyrene. Induction of the CYP1A1 gene is regulated at the transcriptional level and is ligand dependent with the prototypical 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) being the most potent known inducer of CYP1A1 transcription. This process is mediated by the AHR/ARNT signaling pathway whereby ligand binds AHR in the cytoplasm allowing its translocation to the nucleus where it binds with its hertrodimerization partner, ARNT and subsequently binds DNA at cognate binding sites termed xenobiotic responsive elements (XREs) located in the 5\u27 flanking region of the CYP1A1 and other genes.
The zebrafish (Danio rerio) has recently become an important model system for the study of TCDD-mediated developmental toxicity due to their relative ease of maintaining and breeding, external fertilization, abundant transparent embryos, and sensitivity to TCDD similar to mammalian models. It is therefore essential to vii characterize the molecular mechanisms of AHR mediated gene regulation in this organism.
The upstream flanking region of a putative CYP1A gene from zebrafish was identified by the screening of a PAC genomic library. Sequencing revealed a region which contains 8 putative core xenobiotic response elements (XREs) organized in two distinct clusters. The region between -580 to -187 contains XRE 1-3 while the region between -2608 to -2100 contains XRE 4-8. Only XRE 1, 3, 4, 7, and 8 exhibited TCDD-dependant association of AHR/ARNT complexes when evaluated by gel shift assays. The use of in vitro mutagenesis and Luciferase reporter assays further showed that only XRE\u27s 4, 7, and 8 were capable of conveying TCDD-mediated gene induction. The role of nucleotides flanking the core XRE was investigated through the use of EMSA and reporter assays. Similar methods were employed on additional transcription factor binding sites identified by in silico analyses revealing two sites conforming to an HNF- 3α and CREB motif, respectively, which demonstrate importance to regulation of the gene
Pancreatic beta cell dysfunction in response to chronic hyperglycemia is partially mediated by transcriptional downregulation of Gli-similar 3 (Glis3)
Gli-similar 3 (Glis3) is a Krüppel-like zinc finger protein that plays critical roles in development and in the maintenance of normal physiological functions in a variety of tissues. In humans, GLIS3 deficiency has been linked to a rare syndrome characterized by neonatal diabetes, hypothyroidism, and polycystic kidney disease. In addition, genome-wide association studies (GWAS) have implicated Glis3 as a risk locus for the development of diabetes. While Glis3 is known to play important roles in the specification of endocrine cell fates during pancreatic development, its role in the mature beta cell and the mechanism by which Glis3 dysfunction results in type 2 diabetes remains unclear. We have characterized a rat pancreatic hybridoma cell line (BRIN BD11) that secretes insulin in response to physiologically normal glucose levels but has greatly diminished expression of Glis3. The cell line exhibited significantly decreased levels of known Glis3 target genes, Ins2 and Ccnd2 in addition to the insulin activator, MafA. We investigated the effects of stable Glis3 overexpression on BRIN-BD11 cells and found that Ins2 and Ccnd2 levels were increased in the presence of exogenous Glis3. Interestingly, while chronic exposure of beta cells to high levels of glucose results reduced expression of Ins1/2 and MafA, we found that BRIN BD11 cells were relatively protected from the effects of glucotoxicity and exogenous Glis3 expression partially rescued the phenotype. Collectively, these data suggest that BRIN BD11 cells may be a useful model for the study of beta cell dysfunction preceding the onset of type 2 diabetes
- …
