8 research outputs found

    Effect of Mn/Al ratio in Co–Mn–Al mixed oxide catalysts prepared from hydrotalcite-like precursors on catalytic decomposition of N2O

    No full text
    The Co–Mn–Al mixed oxide catalysts were prepared by thermal decomposition of hydrotalcite-like precursors with Co/(Mn + Al) molar ratio of 2 and Mn/Al molar ratio varying from 0 to 2. The obtained catalysts were characterized by powder XRD, XPS, BET surface area and TPR measurements and tested in N2O decomposition. The most active Co4MnAl catalyst exhibited both the optimum Mn/Al molar ratio and the optimum amount of components reducible in the temperature region in which the catalytic reaction proceeds (350–450 °C)

    Targeted design of alpha-MnO2 based catalysts for oxygen reduction

    No full text
    The paper focuses on theoretical and experimental aspects of an oxide surface optimization for oxygen reduction reaction (ORR). Various doped alpha-MnO2 based electrocatalysts were prepared by microwave-assisted hydrothermal synthesis and electrochemically characterized to validate density functional theory (DFT) based predictions of the oxidation state and local structure effects on the catalytic activity of alpha-MnO2 catalysts in ORR. Both theory and experiments conclude that the highest activity in ORR is to be expected in the case of clustered Mn3+ sites which yield activity comparable with that of the polycrystalline Pt. These active sites have to be formed under in-operando conditions and their formation is hindered in doped alpha-MnO2 catalysts. The activity of the other conceivable active sites based on non-clustered Mn3+ or Mn4+ is inferior to that of clustered Mn3+. The activation of Mn3+ or Mn4+ based active sites leads to a shift in selectivity of the ORR process towards 2 electron formation of hydrogen peroxide. (C) 2016 Elsevier Ltd. All rights reserved

    Targeted design of α-MnO<sub>2</sub> based catalysts for oxygen reduction

    No full text
    The paper focuses on theoretical and experimental aspects of an oxide surface optimization for oxygen reduction reaction (ORR). Various doped α-MnO2 based electrocatalysts were prepared by microwave-assisted hydrothermal synthesis and electrochemically characterized to validate density functional theory (DFT) based predictions of the oxidation state and local structure effects on the catalytic activity of α-MnO2 catalysts in ORR. Both theory and experiments conclude that the highest activity in ORR is to be expected in the case of clustered Mn3+ sites which yield activity comparable with that of the polycrystalline Pt. These active sites have to be formed under in-operando conditions and their formation is hindered in doped alpha-MnO2 catalysts. The activity of the other conceivable active sites based on non-clustered Mn3+ or Mn4+ is inferior to that of clustered Mn3+. The activation of Mn3+ or Mn4+ based active sites leads to a shift in selectivity of the ORR process towards 2 electron formation of hydrogen peroxide. <br/
    corecore