8 research outputs found

    Centrosome amplification induces high grade features and is prognostic of worse outcomes in breast cancer

    Get PDF
    Table S1. Patient characteristics. Table S2. Hazard ratios from multivariate analysis. Table S3. Sequences of primers used for qRT-PCR. Figure S1. Distribution of average centrosome number per cell in the breast cancer patients represented in our TMA. Figure S2. Correlations between centrosome amplification and nodal status, patient age, and tumor size. Figure S3. Centrosome clustering but not structural abnormalities correlate with worse outcomes in breast cancer. Figure S4. CIN is prognostic of worse breast cancer-related survival. Figure S5. Centrosome amplification correlates with adverse clinical factors. Figure S6. CA correlates with higher ploidy and CIN. (DOCX 6223 kb

    Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System

    Get PDF
    Aneuploidy, a state of karyotype imbalance, is a hallmark of cancer. Changes in chromosome copy number have been proposed to drive disease by modulating the dosage of cancer driver genes and by promoting cancer genome evolution. Given the potential of cells with abnormal karyotypes to become cancerous, do pathways that limit the prevalence of such cells exist? By investigating the immediate consequences of aneuploidy on cell physiology, we identified mechanisms that eliminate aneuploid cells. We find that chromosome mis-segregation leads to further genomic instability that ultimately causes cell-cycle arrest. We further show that cells with complex karyotypes exhibit features of senescence and produce pro-inflammatory signals that promote their clearance by the immune system. We propose that cells with abnormal karyotypes generate a signal for their own elimination that may serve as a means for cancer cell immunosurveillance. By examining the immediate consequences of chromosome mis-segregation, Santaguida et al. show that aneuploidy causes genomic instability and the evolution of cells with complex karyotypes. Such cells undergo senescence and produce pro-inflammatory cytokines that promote their clearance by natural killer cells. Keywords: aneuploidy; cancer; immune system; genome instability; senescenceNational Institutes of Health (U.S.) (Grant CA206157)National Institutes of Health (U.S.) (Grant GM118066)National Institute of General Medical Sciences (U.S.) (Grant T32GM007753

    Chromosome missegregation rate predicts whether aneuploidy will promote or suppress tumors

    No full text
    Aneuploidy, a chromosome content other than a multiple of the haploid number, is a common feature of cancer cells. Whole chromosomal aneuploidy accompanying ongoing chromosomal instability in mice resulting from reduced levels of the centromere-linked motor protein CENP-E has been reported to increase the incidence of spleen and lung tumors, but to suppress tumors in three other contexts. Exacerbating chromosome missegregation in CENP-E(+/-) mice by reducing levels of another mitotic checkpoint component, Mad2, is now shown to result in elevated cell death and decreased tumor formation compared with reduction of either protein alone. Furthermore, we determine that the additional contexts in which increased whole-chromosome missegregation resulting from reduced CENP-E suppresses tumor formation have a preexisting, elevated basal level of chromosome missegregation that is exacerbated by reduction of CENP-E. Tumors arising from primary causes that do not generate chromosomal instability, including loss of the INK4a tumor suppressor and microsatellite instability from reduction of the DNA mismatch repair protein MLH1, are unaffected by CENP-E-dependent chromosome missegregation. These findings support a model in which low rates of chromosome missegregation can promote tumorigenesis, whereas missegregation of high numbers of chromosomes leads to cell death and tumor suppression
    corecore