68 research outputs found

    Relation between static short-range order and dynamic heterogeneities in a nanoconfined liquid crystal

    Get PDF
    International audienceWe analyze the molecular dynamics heterogeneity of the liquid crystal 4-n-octyl-4'-cyanobiphenyl nanoconfined in porous silicon. We show that the temperature dependence of the dynamic correlation length wall, which measures the distance over which a memory of the interfacial slowing down of the molecular dynamics persists, is closely related to the growth of the short-range static order arising from quenched random fields. More generally, this result may also shed some light on the connection between static and dynamic heterogeneities in a wide class of condensed and soft matter systems

    Bioprotectant glassforming solutions confined in porous silicon nanocapillaries

    Get PDF
    Glycerol and trehalose-glycerol binary solutions are glass-forming liquids with remarkable bioprotectant properties. In this paper, we address the effects of confining of these solutions in straight channels of diameter D=8 nm formed by porous silicon. Neutron diffraction and incoherent quasielastic neutron scattering are used to reveal the different effects of nanoconfinement and addition of trehalose on the intermolecular structure and molecular dynamics of the liquid and glassy phases, on a nanosecond timescale.Comment: Accepted for the 2008 MRS Fall Meeting Symposium TT proceeding

    Competing coexisting phases in 2D water

    Get PDF
    International audienceThe properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules

    Exploring the Nucleon Structure from First Principles of QCD

    Get PDF
    Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions

    Hydration water and peptide dynamics - two sides of a coin. A neutron scattering and adiabatic calorimetry study at low hydration and cryogenic temperatures

    Get PDF
    In the present work we bridge neutron scattering and calorimetry in the study of a low-hydration sample of a 15-residue hybrid peptide from cecropin and mellitin CA(1-7)M(2-9) of proven antimicrobial activity. Quasielastic and low-frequency inelastic neutron spectra were measured at defined hydration levels a nominally 'dry' sample (specific residual hydration h = 0.060 g/g), a H2O-hydrated (h = 0.49) and a D2O-hydrated one (h = 0.51). Averaged mean square proton mobilities were derived over a large temperature range (50-300 K) and the vibrational density of states (VDOS) were evaluated for the hydrated samples. The heat capacity of the H2O-hydrated CA(1-7) M(2-9) peptide was measured by adiabatic calorimetry in the temperature range 5-300 K, for different hydration levels. The glass transition and water crystallization temperatures were derived in each case. The existence of different types of water was inferred and their amounts calculated. The heat capacities as obtained from direct calorimetric measurements were compared to the values derived from the neutron spectroscopy by way of integrating appropriately normalized VDOS functions. While there is remarkable agreement with respect to both temperature dependence and glass transition temperatures, the results also show that the VDOS derived part represents only a fraction of the total heat capacity obtained from calorimetry. Finally our results indicate that both hydration water and the peptide are involved in the experimentally observed transitions

    Incoherent Quasielastic Neutron Scattering Study of Molecular dynamics of 4-n-cyano-4'-octylbiphenyl

    Get PDF
    We report incoherent quasielastic neutron scattering experiments on the thermotropic liquid crystal 4-n-cyano-4'-octylbiphenyl. The combination of time-of-flight and backscattering data allows analyzing the intermediate scattering function over about three decades of relaxation times. Translational diffusion and uniaxial molecular rotations are clearly identified as the major relaxation processes in respectively the nanosecond and picosecond time scales. The comparison with literature data obtained by other techniques is discussed.Comment: Accepted in Phys. Chem. Chem. Phy

    Disentangling water, ion and polymer dynamics in an anion exchange membrane

    Get PDF
    Semipermeable polymeric anion exchange membranes are essential for separation, filtration and energy conversion technologies including reverse electrodialysis systems that produce energy from salinity gradients, fuel cells to generate electrical power from the electrochemical reaction between hydrogen and oxygen, and water electrolyser systems that provide H2 fuel. Anion exchange membrane fuel cells and anion exchange membrane water electrolysers rely on the membrane to transport OH− ions between the cathode and anode in a process that involves cooperative interactions with H2O molecules and polymer dynamics. Understanding and controlling the interactions between the relaxation and diffusional processes pose a main scientific and critical membrane design challenge. Here quasi-elastic neutron scattering is applied over a wide range of timescales (100–103 ps) to disentangle the water, polymer relaxation and OH− diffusional dynamics in commercially available anion exchange membranes (Fumatech FAD-55) designed for selective anion transport across different technology platforms, using the concept of serial decoupling of relaxation and diffusional processes to analyse the data. Preliminary data are also reported for a laboratory-prepared anion exchange membrane especially designed for fuel cell applications
    • 

    corecore