48 research outputs found

    Participation des organismes ingénieurs à l'agrégation des sols : analyse des patrons et mise en évidence des interactions

    Get PDF
    Les organismes ingĂ©nieurs sont des acteurs majeurs de la macroagrĂ©gation, un processus indispensable Ă  la production de services Ă©cosystĂ©miques par les sols. L'ignorance de l'origine rĂ©elle des diffĂ©rents types d'agrĂ©gats trouvĂ©s dans les sols, de leurs transformations au cours du temps et de leurs positions dans la matrice du sol, empĂȘche la description et la modĂ©lisation de la dynamique de la macroagrĂ©gation du sol et des processus associĂ©s. Nous avons montrĂ© que la spectroscopie dans le proche infra-rouge (NIRS) permet d’identifier l'origine des macroagrĂ©gats construits par diffĂ©rents ingĂ©nieurs Ă©cosystĂ©miques, les vers de terre et les plantes, dans diffĂ©rents milieux. Nous avons retrouvĂ© dans les signatures spectrales de macroagrĂ©gats, collectĂ©s en surface et dans un bloc de sol sur le terrain, les signatures de rĂ©fĂ©rence de structures biogĂ©niques obtenues dans des conditions contrĂŽlĂ©es en microcosmes au laboratoire. Des expĂ©riences complĂ©mentaires rĂ©alisĂ©es en serre ont permis d'Ă©tudier les interactions entre racines et vers de terre dans la production de macroagrĂ©gats. Les structures biogĂ©niques produites en prĂ©sence d’une espĂšce de plante et d’une espĂšce de ver de terre ont rĂ©vĂ©lĂ© des effets additifs des deux espĂšces dans leurs signatures spectrales montrant une interaction plutĂŽt que la production de structures isolĂ©es spatialement. Une derniĂšre Ă©tude rĂ©alisĂ©e en laboratoire a montrĂ© que les effets, causĂ©s par le vieillissement de turricules sur leurs teneurs en MO, sont suffisants pour affecter les signatures spectrales des turricules et ainsi permettent de dater l’Ăąge d’apparition d’un turricule. Mes travaux de thĂšse proposent une nouvelle mĂ©thodologie pour analyser les origines des macroagrĂ©gats du sol, pour quantifier l'apport relatif des ingĂ©nieurs Ă©cosystĂ©miques Ă  l'agrĂ©gation du sol et pour Ă©valuer la dynamique des macroagrĂ©gats dans la structure du sol

    Impact of Temporal Macropore Dynamics on Infiltration : Field Experiments and Model Simulations

    Get PDF
    Macropores greatly affect water and solute transport in soils. Most macropores are of biogenic origin; however, the resulting seasonal dynamics are often neglected. Our study aimed to examine temporal changes in biopore networks and the resulting infiltration patterns. We performed infiltration experiments with Brilliant Blue on pastureland in the Luxembourgian Attert catchment (spring, summer, and autumn 2015). We developed an image-processing scheme to identify and quantify changes in biopores and infiltration patterns. Subsequently, we used image-derived biopore metrics to parameterize the ecohydrological model echoRD (ecohydrological particle model based on representative domains), which includes explicit macropore flow and interaction with the soil matrix. We used the model simulations to check whether biopore dynamics affect infiltration. The observed infiltration patterns revealed variations in both biopore numbers and biopore–matrix interaction. The field-observed biopore numbers varied over time, mainly in the topsoil, with the largest biopore numbers in spring and the smallest in summer. The number of hydrologically effective biopores in the topsoil seems to determine the number and thereby the fraction of effective biopores in the subsoil. In summer, a strong biopore–matrix interaction was observed. In spring, the dominant process was rapid drainage, whereas in summer and autumn, most of the irrigated water was stored in the examined profiles. The model successfully simulated infiltration patterns for spring, summer, and autumn using temporally different macropore setups. Using a static macropore parameterization the model output deviated from the observed infiltration patterns, which emphasizes the need to consider macropores and their temporal dynamics in soil hydrological modeling

    Vorhersage effektiver Makroporen durch Regenwurmabundanz und abiotische Umweltvariablen

    Get PDF
    RegenwĂŒrmer erzeugen Bioporen und erhöhen somit die MakroporositĂ€t von Böden. Dies kann zu prĂ€ferenziellem Fließen fĂŒhren und somit den vertikalen Wasser- und Stofftransport erhöhen. Das Vorkommen hydraulisch effektiver Bioporen variiert jedoch zeitlich und rĂ€umlich ebenso wie die AktivitĂ€t verschiedener Regenwurmarten. Das Ziel dieser im Rahmen der DFG Forschergruppe CAOS geförderten Studie war es, das Vorkommen effektiver Bioporen ĂŒber die Abundanz relevanter Regenwurmarten und raumzeitliche Muster verschiedener abiotischer Umweltvariablen vorherzusagen. An sechs Standorten im luxemburgischen Wollefsbach-Einzugsgebiet wurden zu sechs Terminen innerhalb eines Jahres Infiltrationsversuche mit Brilliant Blue in fĂŒnffacher Wiederholung durchgefĂŒhrt. In den Bodentiefen 3, 10 und 30 cm wurde die Anzahl der blau gefĂ€rbten, hydraulisch effektiven Bioporen bestimmt. Diese wurden in drei GrĂ¶ĂŸenklassen eingeteilt (Durchmesser: <2, 2–6, >6 mm). ZusĂ€tzlich wurden jeweils die Abundanzen aller gefundenen Regenwurmarten bestimmt. Mittels generalisierter linearer Modelle haben wir den Einfluss von Regenwurmabundanzen und verschiedenen abiotischen Umweltvariablen auf die Anzahl effektiver Bioporen untersucht. Die wichtigsten Variablen waren die Abundanzen von Lumbricus terrestris und Aporrectodea longa, Zeitreihen der Bodenfeuchte, der Luftfeuchte und des Niederschlags sowie die rĂ€umlichen Verteilungen der Landnutzung, der Hangneigung und des topographischen Feuchteindex. Die Eignung einzelner Variablen zur Vorhersage sowie die GĂŒte der Modelle (erklĂ€rte Devianz: 5-50 %; Spearman Korrelation: 0,24-0,67) variierten erheblich zwischen den Bodentiefen und GrĂ¶ĂŸenklassen der vorhergesagten Bioporen. Die resultierenden Zeitreihen der Anzahl effektiver Bioporen und ihre rĂ€umlichen Verteilungen im Einzugsgebiet stellen eine wertvolle Basis fĂŒr die Parametrisierung bodenhydrologischer Modelle dar. DarĂŒber hinaus zeigen unsere Ergebnisse, wie wichtig die BerĂŒcksichtigung der zeitlichen Dynamik hydraulischer KonnektivitĂ€t von Bioporen ist

    Soil fauna and their potential responses to warmer soils

    Get PDF
    Soil fauna are important contributors to ecosystem functioning as well as being tremendously diverse. Effects of warming on soil fauna are understudied and complex, with multiple covariates and a mixture of direct and indirect effects. This, combined with diverse communities, results in a suite of potential responses across temporal, spatial, and biological scales. We present a conceptual diagram to relate these interacting effects and a framework for organizing and understanding past and future research in this field. Themes common in the literature include species-specificity, site-specificity, and the challenge of disentangling the connection between temperature and moisture in soils. Much extant soil biodiversity remains undiscovered and our understanding of the current roles of soil fauna in ecosystem processes is incomplete; future research needs include a focus on these issues as well as using multivariate techniques to separate multiple interacting effects from potentially covarying factors

    A“Dirty” Footprint: Macroinvertebrate diversity in Amazonian Anthropic Soils

    Get PDF
    International audienceAmazonian rainforests, once thought to be pristine wilderness, are increasingly known to have been widely inhabited, modified, and managed prior to European arrival, by human populations with diverse cultural backgrounds. Amazonian Dark Earths (ADEs) are fertile soils found throughout the Amazon Basin, created by pre-Columbian societies with sedentary habits. Much is known about the chemistry of these soils, yet their zoology has been neglected. Hence, we characterized soil fertility, macroinvertebrate communities, and their activity at nine archeological sites in three Amazonian regions in ADEs and adjacent reference soils under native forest (young and old) and agricultural systems. We found 673 morphospecies and, despite similar richness in ADEs (385 spp.) and reference soils (399 spp.), we identified a tenacious pre-Columbian footprint, with 49% of morphospecies found exclusively in ADEs. Termite and total macroinvertebrate abundance were higher in reference soils, while soil fertility and macroinvertebrate activity were higher in the ADEs, and associated with larger earthworm quantities and biomass. We show that ADE habitats have a unique pool of species, but that modern land use of ADEs decreases their populations, diversity, and contributions to soil functioning. These findings support the idea that humans created and sustained high-fertility ecosystems that persist today, altering biodiversity patterns in Amazonia

    A "dirty" footprint: macroinvertebrate diversity in Amazonian Anthropic Soils.

    Get PDF
    Amazonian rainforests, once thought to be pristine wilderness, are increasingly known to have been widely inhabited, modified, and managed prior to European arrival, by human populations with diverse cultural backgrounds. Amazonian Dark Earths (ADEs) are fertile soils found throughout the Amazon Basin, created by pre-Columbian societies with sedentary habits. Much is known about the chemistry of these soils, yet their zoology has been neglected. Hence, we characterized soil fertility, macroinvertebrate communities, and their activity at nine archeological sites in three Amazonian regions in ADEs and adjacent reference soils under native forest (young and old) and agricultural systems

    Do earthworms and roots cooperate to build soil macroaggregates ? A microcosm experiment

    No full text
    Soil ecosystem engineers are major actors of soil macroaggregation, a process that drives the production of ecosystem services by soils. However, our inability to identify the origins of different types of macroaggregates found in soils is an obstacle to describing and modeling their dynamics and associated processes (C sequestration; hydraulic properties). This laboratory study investigated mechanisms of biological soil macroaggregation by two different earthworm species (Apporectodea caliginosa (Savigny) and Allolobophora chlorotica (Savigny) and two plant species (Trifolium pratense, Plantago lanceolata L), in isolation and in all possible combinations. Near infrared (NIR) spectral analysis significantly discriminated macroaggregates according to the organisms that created them since each organism produced macroaggregates with distinct NIR signals (p<0.001). The largest departure from the control signal was observed with T. pratense whereas earthworms and P. lanceolata specific signals were less contrasted. Macroaggregates formed in the presence of more than one ecosystem engineers had mixed signals showing that several actors had participated in their construction. This means that roots and earthworms did not produce macroaggregates in isolation and rather added their effects in building structures of mixed origins. Further studies based on the present methodology will tell us more on below ground behaviors of ecosystem engineers and their interactive building of soil habitats

    Near infrared spectroscopy (NIRS) to estimate earthworm cast age

    No full text
    International audienceAs ecosystem engineers, earthworms are major actors of soil aggregation, a process that drives the delivery of ecosystem services by soils. However, persistence of soil aggregates produced by earthworms, their degradation rates, and their role in the dynamics of soil organic matter (SOM) and nutrients remain poorly known. In this experiment, near infrared (NIR) spectral signatures were measured in subterranean casts of the endogeic earthworm Aporrectodea caliginosa, incubated in controlled laboratory conditions for different periods of time. In parallel, dynamics of total amounts of C and N were assessed in ageing casts. As casts aged, NIR spectral signatures went through three main stages in the maturation process: (1) rapid changes in the NIR signal during the first 48 h, (2) a maturation period from days 3–30 with much slower change in NIR spectral signatures and (3) a further stage of maturation (days 45–90), where cast signals converged towards those of control soil. The first two axes of the PCA corresponded closely to the C and N content, respectively, of the casts. C and N contents in casts remained higher than those in control soil during the whole incubation time. Drying of casts halted the mineralization of organic matter, resulting in lack of change in the NIR spectral signal as long as casts were kept dry
    corecore