182 research outputs found

    The water footprint of olives and olive oil in Spain

    Get PDF
    This paper evaluates the water footprint of Spanish olives and olive oil over the period 1997-2008. In particular, it analyses the three colour components of the water footprint: green (rainwater stored in the soil), blue (surface and groundwater) and grey (freshwater required to assimilate load of pollutants). Apparent water productivity and virtual water embedded in olive oil exports have also been studied. Results show more than 99.5% of the water footprint of one liter of bottled olive oil is related to the olive production, whereas less than 0.5% is due to the other components such as bottle, cap and label. Over the studied period, the green water footprint in absolute terms of Spanish olive oil production represents about 72% in rainfed systems and just 12% in irrigated olive orchards. Blue and grey water footprints represent 6% and 10% of the national water footprint, respectively. It is shown that olive production is concentrated in regions with the smallest water footprint per unit of product. However, the increase of groundwater consumption in the main olive producing region (Andalusia), from 98 to 378 Mm3 between 1997 and 2008, has added significant pressure in the upstream Guadalquivir basin. This raises questions about the sustainability of irrigated olive orchards for export from the region. Finally, the virtual water related to olive oil exports illustrate the importance of green water footprint of rainfed olives amounting to about 77% of the total virtual water exports

    A water footprint assessment of a pair of jeans: the influence of agricultural policies on the sustainability of consumer products.

    Full text link
    This study reports the results of a water footprint (WF) assessment of five types of textiles commonly used for the production of jeans, including two different fibres (cotton and Lyocell fibre) and five corresponding production methods for spinning, dyeing and weaving. The results show that the fibre production is the stage with the highest water consumption, being cotton production particularly relevant. Therefore, the study pays particular attention to the water footprint of cotton production and analyses the effects of external factors influencing the water footprint of a product, in this case, the incentives provided by the EU Common Agricultural Policy (CAP), and the relevance of agricultural practices to the water footprint of a product is emphasised. An extensification of the crop production led to higher WF per unit, but a lower overall pressure on the basins water resources. This study performs a sustainability assessment of the estimated cotton WFs with the water scarcity index, as proposed by Hoekstra et al. (2011), and shows their variations in different years as a result of different water consumption by crops in the rest of the river basin. In our case, we applied the assessment to the Guadalquivir, Guadalete and Barbate river basins, three semi-arid rivers in South Spain. Because they are found to be relevant, the available water stored in dams and the outflow are also incorporated as reference points for the sustainability assessment. The study concludes that, in the case of Spanish cotton production, the situation of the basin and the policy impact are more relevant for the status of the basin s water resources than the actual WF of cotton production. Therefore, strategies aimed at reducing the impact of the water footprint of a product need to analyse both the WF along the value chain and within the local context

    Empleo de cenizas de fondo de central térmica y cal como filler en mezclas bituminosas

    Get PDF
    This study focuses on the characterization of bottom ash (PCC-BA) and determining the mechanical characteristics of hot mix asphalt (HMA) using PCC-BA and hydrated lime (HL) as filler. Physical and chemical characterization of the bottom ash was carried out to evaluate its eventual reutilization as filler substitute. The materials tested in this study were made using 0%, 25%, 50%, 70% and 100% of PCC-BA combined with HL. HMA mixes were evaluated in terms of their engineering properties, namely: air voids in the mixes, water sensitivity, stiffness modulus, performance in wheel tracking test and fatigue resistance. The results obtained indicate that HMA mixes with a filler blend of 70% PCC-BA and 30% HL fulfil European standards and are suitable for light traffic or small infrastructures.Este estudio se centra en la caracterización de las cenizas de fondo (PCC-BA) y la determinación de las características mecánicas de mezclas bituminosas en caliente (HMA), utilizando cenizas de fondo y la cal hidratada (HL) como filler. Se realizó la caracterización física y química de las cenizas de fondo para evaluar su empleo como sustituto de filler. Las mezclas ensayadas en este estudio se realizaron utilizando 0%, 25%, 50%, 70% y 100% de cenizas de fondo combinadas con cal hidratada. Se evaluaron propiedades ingenieriles de las mezclas bituminosas, tales como los huecos de aire en las mezclas, la sensibilidad al agua, el módulo de rigidez, el ensayo de pista y la resistencia a la fatiga. Los resultados obtenidos indican que las mezclas bituminosas fabricadas con una combinación de filler del 70% de cenizas de fondo y el 30% cal hidratada, cumplen con las normas europeas y son adecuados para su aplicación con tráficos ligeros o en pequeñas infraestructuras

    Estimación de la resistencia a compresión simple del jabre estabilizado “in situ” con cemento como material en la formación de explanadas de carreteras

    Get PDF
    Granite rock has powerful alterations at several meters of depth. The clayed sand resulting is commonly known as jabre. This “in situ” mixture of cement-stabilized soil requires a laboratory formula. Even when the test section is correctly verified, the mechanical properties of the homogeneous mixture of jabre exhibit high degrees of dispersion. The laboratory work undertaken included particle-size analysis and screening, defini­tion of liquid and plastic limits, compressive strength, dry density and moisture content over stabilized samples, modified Proctor, California Bearing Ratio (CBR) and the determination of the workability of the hydrauli­cally bound mixtures. The stress resistance curve was analyzed by means of a multilinear model of unconfined compressive strength (UCS). Since practical engineering only requires UCS for 7 days, in order to gain greater knowledge of the material, other UCS transformations were used at other curing times such as 7, 14 and 28 days.La roca granítica presenta habitualmente un horizonte de alteración con varios metros de potencia. La arena arcillosa resultante como producto de alteración se deno­mina comúnmente jabre. Aunque la fórmula de trabajo de la estabilización de jabre con cemento se verifique correctamente en tramos de prueba, la estabilización “in situ” del jabre con cemento presenta habitualmente elevadas dispersiones. Entre los ensayos de laboratorio efectuados se encuentran los ensayos de análisis granulo­métrico, límites de Atterberg, resistencia a compresión simple (RCS), la densidad y humedad sobre probetas de suelo estabilizado, Proctor modificado, índice CBR (California Bearing Ratio) y el plazo de trabajabilidad de la mezcla con cemento. La curva de endurecimiento del suelo estabilizado fue ajustada mediante un modelo multi­lineal. Aunque tradicionalmente se especifique la RCS a 7 días, buscando definir un mejor comportamiento del material, los autores calcularon otros modelos de jabre estabilizado para roturas a 7, 14 y 28 días

    Sources, Occurrence and Characteristics of Fluorescent Biological Aerosol Particles Measured Over the Pristine Southern Ocean.

    Get PDF
    In this study, we investigate the occurrence of primary biological aerosol particles (PBAP) over all sectors of the Southern Ocean (SO) based on a 90-day data set collected during the Antarctic Circumnavigation Expedition (ACE) in austral summer 2016-2017. Super-micrometer PBAP (1-16 µm diameter) were measured by a wide band integrated bioaerosol sensor (WIBS-4). Low (3σ) and high (9σ) fluorescence thresholds are used to obtain statistics on fluorescent and hyper-fluorescent PBAP, respectively. Our focus is on data obtained over the pristine ocean, that is, more than 200 km away from land. The results indicate that (hyper-)fluorescent PBAP are correlated to atmospheric variables associated with sea spray aerosol (SSA) particles (wind speed, total super-micrometer aerosol number concentration, chloride and sodium concentrations). This suggests that a main source of PBAP over the SO is SSA. The median percentage contribution of fluorescent and hyper-fluorescent PBAP to super-micrometer SSA was 1.6% and 0.13%, respectively. We demonstrate that the fraction of (hyper-)fluorescent PBAP to total super-micrometer particles positively correlates with concentrations of bacteria and several taxa of pythoplankton measured in seawater, indicating that marine biota concentrations modulate the PBAP source flux. We investigate the fluorescent properties of (hyper-)fluorescent PBAP for several events that occurred near land masses. We find that the fluorescence signal characteristics of particles near land is much more variable than over the pristine ocean. We conclude that the source and concentration of fluorescent PBAP over the open ocean is similar across all sampled sectors of the SO

    Algoritmo urza para el análisis de sensibilidad en problemas de programación lineal

    Get PDF
    Este artículo menciona que el algoritmo pretende llenar un hueco existente en los análisis de sensibilidad de la Programación Lineal. Estos análisis abarcan tradicionalmente a todos los coeficientes del sistema excepto a los coeficientes técnicos de las variables de la BASE, debido a la dificultad de calcular la inversa de ésta cuando se ha introducido un parámetro en uno de sus elementos.KUTXA; Vicerrectorado de Campus de Gipuzkoa de la UPV/EH

    Uncoupled seasonal variability of transparent exopolymer and Coomassie stainable particles in coastal Mediterranean waters: Insights into sources and driving mechanisms

    Get PDF
    Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) are gel-like particles, ubiquitous in the ocean, that affect important biogeochemical processes including organic carbon cycling by planktonic food webs. Despite much research on both groups of particles (especially TEP) over many years, whether they exist as distinctly stainable fractions of the same particles or as independent particles, each with different driving factors, remains unclear. To address this question, we examined the temporal dynamics of TEP and CSP over 2 complete seasonal cycles at 2 coastal sites in the Northwestern Mediterranean Sea, the Blanes Bay Microbial Observatory (BBMO) and the L’Estartit Oceanographic Station (EOS), as well as their spatial distribution along a coast-to-offshore transect. Biological, chemical, and physical variables were measured in parallel. Surface concentrations (mean + standard deviation [SD]) of TEP were 36.7 + 21.5 µg Xanthan Gum (XG) eq L–1 at BBMO and 36.6 + 28.3 µg XG eq L–1 at EOS; for CSP, they were 11.9 + 6.1 µg BSA eq L–1 at BBMO and 13.0 + 5.9 µg BSA eq L–1 at EOS. Seasonal variability was more evident at EOS, where surface TEP and CSP concentrations peaked in summer and spring, respectively, and less predictable at the shore-most station, BBMO. Vertical distributions between surface and 80 m, monitored at EOS, showed highest TEP concentrations within the surface mixed layer during the stratification period, whereas CSP concentrations were highest before the onset of summer stratification. Phytoplankton were the main drivers of TEP and CSP distributions, although nutrient limitation and saturating irradiance also appeared to play important roles. The dynamics and distribution of TEP and CSP were uncoupled both in the coastal sites and along the transect, suggesting that they are different types of particles produced and consumed differently in response to environmental variability

    Study of the mechanical behavior of asphalt mixtures using fractional rheology to model their viscoelasticity

    Get PDF
    This study focuses on the mechanical behavior of asphalt mixtures composed of aggregate particles attached with an asphalt binder. Asphalt mixtures are viscoelastic composite materials widely used in the construction of pavement layers. The modelling of such materials is currently done using the Burgers model. However, this model is limited when explaining some of the viscoelastic phenomena of an asphalt mixture, mainly because the Burgers model was developed for a single material with a dual nature. This work presents a new approach that provides a more appropriate framework for studying asphalt mixtures. The model assumes an aggregate particle enclosed by an asphalt material. Viscoelastic equations were developed using derivatives of fractional order. Then, the creep, recovery, and relaxation phenomena in an asphalt mixture were analyzed using the new model. Unlike the Burgers model, the new model can predict the elastic jump observed at the beginning of the creep modulus. Thus, the new model seems to describe better those practical cases of asphalt mixtures used in the construction of pavement layers. The new model can be used to modify the properties of the binder for designing optimized and more resistant asphalt mixtures

    Main drivers of transparent exopolymer particle distribution across the surface Atlantic Ocean

    Get PDF
    Transparent exopolymer particles (TEPs) are a class of gel particles, produced mainly by microorganisms, which play important roles in biogeochemical processes such as carbon cycling and export. TEPs (a) are colonized by carbon-consuming microbes; (b) mediate aggregation and sinking of organic matter and organisms, thereby contributing to the biological carbon pump; and (c) accumulate in the surface microlayer (SML) and affect air–sea gas exchange. The first step to evaluate the global influence of TEPs in these processes is the prediction of TEP occurrence in the ocean. Yet, little is known about the physical and biological variables that drive their abundance, particularly in the open ocean. Here we describe the horizontal TEP distribution, along with physical and biological variables, in surface waters along a north–south transect in the Atlantic Ocean during October–November 2014. Two main regions were separated due to remarkable differences: the open Atlantic Ocean (OAO, n=30), and the Southwestern Atlantic Shelf (SWAS, n=10). TEP concentration in the entire transect ranged 18.3–446.8&thinsp;µg&thinsp;XG&thinsp;eq&thinsp;L−1 and averaged 117.1±119.8&thinsp;µg&thinsp;XG&thinsp;eq&thinsp;L−1, with the maximum concentrations in the SWAS and in a station located at the edge of the Canary Coastal Upwelling (CU), and the highest TEP to chlorophyll a (TEP:Chl a) ratios in the OAO (183±56) and CU (1760). TEPs were significantly and positively related to Chl a and phytoplankton biomass, expressed in terms of C, along the entire transect. In the OAO, TEPs were positively related to some phytoplankton groups, mainly Synechococcus. They were negatively related to the previous 24&thinsp;h averaged solar irradiance, suggesting that sunlight, particularly UV radiation, is more a sink than a source for TEP. Multiple regression analyses showed the combined positive effect of phytoplankton and heterotrophic prokaryotes (HPs) on TEP distribution in the OAO. In the SWAS, TEPs were positively related to high nucleic acid-containing prokaryotic cells and total phytoplankton biomass, but not to any particular phytoplankton group. Estimated TEP–carbon constituted an important portion of the particulate organic carbon pool in the entire transect (28&thinsp;%–110&thinsp;%), generally higher than the phytoplankton and HP carbon shares, which highlights the importance of TEPs in the cycling of organic matter in the ocean.</p
    corecore