19 research outputs found

    Directional Attenuation of Jet Noise With Eccentric Coannular Nozzle Investigated

    Get PDF
    Jet noise and flow field were measured to follow up on observations made by Professor D. Papamoschou of the University of California at Irvine (NASA Grant NAG3-2345). When a dual-stream coannular nozzle was arranged non-concentrically, noise was attenuated significantly on the side where the annulus was thicker. A similar observation was also made in reference 2. The practical significance is obvious. If the bypass flow of a jet exhaust in flight could be diverted to form a thicker layer underneath, then less noise would be heard by an observer on the ground. In view of the current emphasis on jet noise abatement, researchers felt that the effect deserved further attention. This prompted an experiment to confirm the phenomenon in a larger facility and to obtain flow-field data to advance understanding of the mechanism

    Transonic Resonance Demonstrated To Be a Source of Internal Noise From Mixer-Ejector Nozzles

    Get PDF
    During noise field studies with mixer-ejector nozzles in NASA's High-Speed Research program, tones were often encountered. The tones would persist in the simulated "cutback" condition (shortly after takeoff). Unfortunately, we did not understand their origin and, thus, could not develop a logical approach for suppressing them. We naturally questioned whether or not some of those tones were due to the transonic resonance. This was studied with a 1/13th scale model of the High-Speed Civil Transport nozzle. The first objective was to determine if indeed tones could be detected in the radiated noise. The next objective was to diagnose if those tones were due to the transonic resonance. Agreement of the frequencies with the correlation equation and the effect of boundary layer tripping were to be used in the diagnosis

    Effect of Wedge-Shaped Deflectors on Flow Fields of Dual-Stream Jets

    Get PDF
    The effect of wedge-shaped fan flow deflectors on the mean and turbulent flow-fields of dual-stream jets is investigated. Several wedge-shaped deflector concepts were used to create asymmetry in the plume of a dual-stream jet issuing from a scaled down version of the NASA Glenn ‘5BB’ bypass-ratio 8 turbofan nozzle. The deflector configurations comprised internal and external wedges with and without a pylon. Some external wedges incorporated local extensions of the fan nacelle. All the deflectors reduced radial velocity gradients, magnitudes of peak Reynolds stresses, and peak turbulent kinetic energy beneath the jet centerplane, with an increase above the jet centerplane. A correlation was obtained between the maximum radial velocity gradient and the peak turbulent kinetic energy in the dominant noise source region

    Transverse Injection into Subsonic Crossflow with Various Injector Orifice Geometries

    Get PDF
    Computational and experimental results are presented for a case study of single injectors employed in 90 deg transverse injection into a non-reacting subsonic flow. Different injector orifice shapes are used (including circular, square, diamond-shaped, and wide rectangular slot), all with constant cross-sectional area, to observe the effects of this variation on injector penetration and mixing. Whereas the circle, square, and diamond injector produce similar jet plumes, the wide rectangular slot produces a plume with less vertical penetration than the others. There is also some evidence that the diamond injector produces slightly faster penetration with less mixing of the injected fluid. In addition, a variety of rectangular injectors were analyzed, with varying length/width ratios. Both experimental and computational data show improved plume penetration with increased streamwise orifice length. 3-D Reynolds-Averaged Navier-Stokes (RANS) results are obtained for the various injector geometries using NCC (National Combustion Code) with the kappa-epsilon turbulence model in multi-species modes on an unstructured grid. Grid sensitivity results are also presented which indicate consistent qualitative trends in the injector performance comparisons with increasing grid refinement

    Resonance and Tones in Dual-Stream Nozzle Flows

    Get PDF
    A dual-stream nozzle configuration was studied numerically with the objective of predicting the appearance of tones and study their sources. It was found that some of the tones traced to a coupling between Strouhal shedding from the struts, which held different pieces of the nozzle together, and various duct acoustic modes. A focus of the work was on exploring the nature of the duct modes. First, elements of the numerical procedure were studied for a 4-strut nozzle, validating the results with existing experimental data. The approach was then applied to a 3-strut geometry and four different excitation methods. The predicted tones and associated duct modes are analyzed in detail

    Noise from a Jet Discharging Into a Duct and Its Suppression

    Get PDF
    The present study addresses unwanted high intensity noise sometimes encountered in engine test facilities. A simplified model-scale experiment is conducted for a circular jet discharging into a cylindrical duct. For the given configuration the unwanted noise is found to be primarily due to the duct resonance modes excited by the jet. When the "preferred mode". frequency of the jet matches a duct resonant frequency there can be a locked-in "super resonance". accompanied by a high intensity tone. However, even in the absence of a locked-in resonance, high levels of unwanted noise may occur due to the duct modes excited simply by broadband disturbances of the jet. Various methods for suppression of the noise are explored. Tabs placed on the ends of the duct are found ineffective; so are longitudinal fins placed inside the duct. A rod inserted perpendicular to the flow at different axial locations is also found ineffective; however, when there is a super resonance it is effective in suppressing the tone. By far the best suppression is achieved by a wire-mesh screen placed at the downstream end of the duct; placing it on the upstream end also works, however, there is some penalty at high frequencies due to impingement noise. The screen not only eliminates any super resonance but also the duct mode spectral peaks in the absence of such resonance. Apparently it works by dampening the velocity fluctuations at the pressure node and thereby weakening the resonance condition, for the simplified configuration under consideration

    Application of Spectroscopic Doppler Velocimetry for Measurement of Streamwise Vorticity

    Get PDF
    A spectroscopic Doppler velocimetry technique has been developed for measuring two transverse components of velocity and hence streamwise vorticity in free jet flows. The nonintrusive optical measurement system uses Mie scattering from a 200 mW green continuous-wave laser interacting with dust and other tracer particulates naturally present in the air flow to measure the velocities. Scattered light is collected in two opposing directions to provide measurements of two orthogonal velocity components. An air-spaced Fabry-Perot interferometer is used for spectral analysis to determine the optical frequency shift between the incident laser light and the Mie scattered light. This frequency shift is directly proportional to the velocity component in the direction of the bisector of the incident and scattered light wave propagation vectors. Data were acquired for jet Mach numbers of 1.73 and 0.99 using a convergent 1.27-cm diameter round nozzle fitted with a single triangular "delta-tab". The velocity components and the streamwise vorticity calculated from the measurements are presented. The results demonstrate the ability of this novel optical system to obtain velocity and vorticity data without any artificial seeding and using a low power laser system

    Background Oriented Schlieren Applied to Study Shock Spacing in a Screeching Circular Jet

    Get PDF
    Background oriented schlieren (BOS) is a recent development of the schlieren and shadowgraph methods. The BOS technique has the ability to provide visualizations of the density gradient in both the axial and radial directions. The resultant magnitude of the density gradients allows for comparison with shadowgraph images. This paper first compares data obtained by the BOS and shadowgraph techniques at identical conditions in a free jet. The patterns and spacing of the shock trains obtained by the two techniques are found to be consistent with one another. This provides confidence in the shock spacing measurement by the BOS technique. Due to its simpler setup, BOS is then applied to investigate the shock spacing associated with the screech phenomenon, especially during stage jumps. Screech frequencies from a 37.6 mm convergent nozzle, as a function of jet Mach number (M(sub j)), are shown to exhibit various stages. As many as eight stages are identified with the present nozzle over the range 1.0 < M(sub j) <1.7. BOS images are acquired at various screech conditions and the shock spacing is examined as a function of M(sub j)

    System and Method for Suppression of Unwanted Noise in Ground Test Facilities

    Get PDF
    Systems and methods for the suppression of unwanted noise from a jet discharging into a duct are disclosed herein. The unwanted noise may be in the form of excited duct modes or howl due to super resonance. A damper member is used to reduce acoustic velocity perturbations at the velocity anti-node, associated with the half-wave resonance of the duct, weakening the resonance condition and reducing the amplitudes of the spectral peaks

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore