12 research outputs found

    Hydrophobic Substituents of the Phenylmethylsulfamide Moiety Can Be Used for the Development of New Selective Carbonic Anhydrase Inhibitors

    Get PDF
    A new series of compounds containing a sulfamide moiety as zinc-binding group (ZBG) has been synthesized and tested for determining inhibitory properties against four human carbonic anhydrase (hCA) isoforms, namely, CAs I, II, IX, and XII. The X-ray structure of the cytosolic dominant isoform hCA II in complex with the best inhibitor of the series has also been determined providing further insights into sulfamide binding mechanism and confirming that such zinc-binding group, if opportunely derivatized, can be usefully exploited for obtaining new potent and selective CAIs. The analysis of the structure also suggests that for drug design purposes the but-2-yn-1-yloxy moiety tail emerges as a very interesting substituent of the phenylmethylsulfamide moiety due to its capability to establish strong van der Waals interactions with a hydrophobic cleft on the hCA II surface, delimited by residues Phe131, Val135, Pro202, and Leu204. Indeed, the complementarity of this tail with the cleft suggests that different substituents could be used to discriminate between isoforms having clefts with different sizes

    Selected strategies to fight pathogenic bacteria

    Get PDF
    Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.Peer reviewe

    Carbonic anhydrase inhibitors targeting metabolism and tumor microenvironment

    Get PDF
    The tumor microenvironment is crucial for the growth of cancer cells, triggering particular biochemical and physiological changes, which frequently influence the outcome of anticancer therapies. The biochemical rationale behind many of these phenomena resides in the activation of transcription factors such as hypoxia-inducible factor 1 and 2 (HIF-1/2). In turn, the HIF pathway activates a number of genes including those involved in glucose metabolism, angiogenesis, and pH regulation. Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA IX and XII, actively participate in these processes and were validated as antitumor/antimetastatic drug targets. Here, we review the field of CA inhibitors (CAIs), which selectively inhibit the cancer-associated CA isoforms. Particular focus was on the identification of lead compounds and various inhibitor classes, and the measurement of CA inhibitory on-/off-target effects. In addition, the preclinical data that resulted in the identification of SLC-0111, a sulfonamide in Phase Ib/II clinical trials for the treatment of hypoxic, advanced solid tumors, are detailed

    Flexibility – a tool for chirality control in asymmetric catalysis

    No full text
    This thesis deals with the design and synthesis of ligands for asymmetric catalysis: palladium catalyzed allylic alkylations, and rho-dium and iridium catalyzed hydrogenations of olefins. Chirally flexible phosphepine ligands based on biphenyl were synthesized and their properties were studied. The rotation barrier for configurationally flexible phosphepines was determined by NMR spectroscopy. The ratio of the atropisomers was shown to depend on the group bound to phosphorus. Only complexes with two homochiral ligands bound to the metal center were observed upon complexation with Rh(I). It was shown that one diastereomer of the flexible ligand exhibits higher activity but lower selectivity than its diastereomer in the rhodium catalyzed hydrogenation of methyl alfa-acetamidocinnamate. These ligands were also tested in nickel catalyzed silabora-tions. Chiral P,N-ligands with pseudo-C2 and pseudo-CS symmetry based on pyrrolidines-phospholanes or azepines-phosphepines were synthesized and studied in palladium catalyzed allylic alkylations. Semi-flexible azepine-phosphepine based ligands were prepared and their ability to adopt pseudo-C2 or pseudo-CS symmetry depending on the substrate in allylic alkylations was studied. It was shown on model allyl systems with flexible N,N-ligands that the ligand prefers CS-symmetry in compexes with anti-anti as well as syn-syn allyl moieties, but that for the latter type of complexes, according to computations, the configuration of the ligand is R*,R* in the olefin complexes formed after addition of a nucleophile to the allylic group. A preliminary investigation of the possibilities to use a su-pramolecular approach for the preparation of P,N-ligands with pseudo-C2 and pseudo-S symmetry was made. An N,N-ligand with C2 symmetry was prepared and its activity in palladium catalyzed ally-lic alkylation was studied. Pyridine-based P,N-ligands were tested in iridium catalyzed hy-drogenations of unfunctionalized olefins with good activities and se-lectivities. In order to attempt to improve the selectivity, ligands with a chirally flexible phosphepine fragment were prepared and applied in catalysis with promising results.QC 2010092

    Tiocianāta un cilvēka ogļskābes anhidrāzes II mijiedarbības kvantu ķīmisks pētījums

    No full text
    Lai noskaidrotu tiocianāta un CA II mijiedarbības mehānismu, veikta detalizēta kvantu ķīmiskā izpēte, izmantojot pusempīrisko PM6 metodi. Aktīvā centra modelis tika balstīts uz CA II struktūras kristalogrāfiskajiem datiem (PBP kods - 2CBA). Modelī tika iekļauti: Zn2+ katjons,kas ir saistīts ar OH- ligandu un triju histidīnu – His94, His96, His119 – atlikumu imidazolu gredzeniem; atlikumi Glu106, Thr199, Thr200, His107, Arg246, Asn244, Gln92 un 8 ūdens molekulas. Mijiedarbības pirmā stadija noris spontāni un tās gaitā notiek tiocianāta molekulas deprotonēšana un tiocianāta anjona (SCN-) veidošanās. Pēc ts pārvarēšanas cinka koordinācijas sferā noris ūdens molekulas aizvietošana ar tiocianāta anjonu SCN-. Līdzsvara stāvoklī saites Zn-N garums ir 1,844 Å, un atbilstošā saites kārta ir 0,639

    Self-adaptable catalysts : substrate-dependent ligand configuration

    No full text
    Pd(II) allyl and Pd(0) olefin complexes containing the configurationally labile ligand 1,2-bis-[4,5-dihydro-3H-dibenzo[c-e]azepino]ethane were studied as models for intermediates in Pd-catalyzed allylic alkylations. According to NMR and DFT studies, the ligand prefers Cs conformation in both 3-1,3-diphenylpropenyl and 3-cyclohexenyl Pd(II) complexes, whereas in Pd(0) olefin complexes it adopts different conformations in complexes derived from the two types of allyl systems in both solution and, as verified by X-ray crystallography, in the solid state. These results demonstrate that the Pd complex is capable of adapting its structure to the reacting substrate. The different structural preferences also provide an explanation for the behavior of 1,3-diphenyl-2-propenyl acetate and 2-cyclohexenyl acetate in Pd-catalyzed allylic alkylations using pseudo-C2 and pseudo-Cs symmetric ligands

    Efficient Expression and Crystallization System of Cancer-Associated Carbonic Anhydrase Isoform IX

    No full text
    Human carbonic anhydrase IX (CA IX) is overexpressed in a number of solid tumors and is considered to be a marker for cellular hypoxia that it is not produced in most normal tissues. CA IX contributes to the acidification of the extracellular matrix, which, in turn, favors tumor growth and metastasis. Therefore, CA IX is considered to be a promising anti-cancer drug target. However, the ability to specifically target CA IX is challenging due to the fact that the human genome encodes 15 different carbonic anhydrase isoforms that have a high degree of homology. Furthermore, structure-based drug design of CA IX inhibitors so far has been largely unsuccessful due to technical difficulties regarding the expression and crystallization of the enzyme. Currently, only one baculovirus-produced CA IX structure in complex with a nonspecific CA inhibitor, acetazolamide, is available in Protein Data Bank. We have developed an efficient system for the production of the catalytic domain of CA IX in methylotrophic yeast Pichia pastoris. The produced protein can be easily crystallized in the presence of inhibitors, as we have demonstrated for several 2-thiophene-sulfonamide compounds. We have also observed significant differences in the binding mode of chemically identical compounds to CA IX and CA II, which can be further exploited in the design of CA IX-specific inhibitor
    corecore