22 research outputs found

    Economic consequences of investing in anti-HCV antiviral treatment from the Italian NHS perspective : a real-world-based analysis of PITER data

    Get PDF
    OBJECTIVE: We estimated the cost consequence of Italian National Health System (NHS) investment in direct-acting antiviral (DAA) therapy according to hepatitis C virus (HCV) treatment access policies in Italy. METHODS: A multistate, 20-year time horizon Markov model of HCV liver disease progression was developed. Fibrosis stage, age and genotype distributions were derived from the Italian Platform for the Study of Viral Hepatitis Therapies (PITER) cohort. The treatment efficacy, disease progression probabilities and direct costs in each health state were obtained from the literature. The break-even point in time (BPT) was defined as the period of time required for the cumulative costs saved to recover the Italian NHS investment in DAA treatment. Three different PITER enrolment periods, which covered the full DAA access evolution in Italy, were considered. RESULTS: The disease stages of 2657 patients who consecutively underwent DAA therapy from January 2015 to December 2017 at 30 PITER clinical centres were standardized for 1000 patients. The investment in DAAs was considered to equal €25 million, €15 million, and €9 million in 2015, 2016, and 2017, respectively. For patients treated in 2015, the BPT was not achieved, because of the disease severity of the treated patients and high DAA prices. For 2016 and 2017, the estimated BPTs were 6.6 and 6.2 years, respectively. The total cost savings after 20 years were €50.13 and €55.50 million for 1000 patients treated in 2016 and 2017, respectively. CONCLUSIONS: This study may be a useful tool for public decision makers to understand how HCV clinical and epidemiological profiles influence the economic burden of HCV

    Oscillatory motion of viscoelastic drops on slippery lubricated surfaces

    Get PDF
    The introduction of slippery lubricated surfaces allows for the investigation of the flow of highly viscous fluids, which otherwise will hardly move on standard solid surfaces. Here we present the study of the gravity induced motion of small drops of polymeric fluids deposited on inclined lubricated surfaces. The viscosity of these fluids decreases with increasing shear rate (shear thinning) and, more importantly, they exert normal forces on planes perpendicular to shear directions (elasticity). Despite the homogeneity of the surface and of the fluids, drops of sufficiently elastic fluids move downward with an oscillating instantaneous speed whose frequency is found to be directly proportional to the average speed and inversely to the drop volume. The oscillatory motion is caused by the formation of a bulge at the rear of the drop, which will be dragged along the drop free contour by the rolling motion undergone by the drop. This finding can be considered as a kind of new Weissenberg effect applied to moving droplets that combines dynamic wetting and polymer rheology

    Numerical and experimental study of optoelectronic trapping on iron-doped lithium niobate substrate

    No full text
    Optoelectronic tweezers (OET) are a promising technique for the realization of reconfigurable systems suitable to trap and manipulate microparticles. In particular, dielectrophoretic (DEP) forces produced by OET represent a valid alternative to micro-fabricated metal electrodes, as strong and spatially reconfigurable electrical fields can be induced in a photoconductive layer by means of light-driven phenomena. In this paper we report, and compare with the experimental data, the results obtained by analyzing the spatial configurations of the DEP-forces produced by a 532 nm laser beam, with Gaussian intensity distribution, impinging on a Fe-doped Lithium Niobate substrate. Furthermore, we also present a promising preliminary result for water-droplets trapping, which could open the way to the application of this technique to biological samples manipulatio

    Structural and compositional characterization of LiNbO3 crystals implanted with high energy iron ions

    No full text
    Iron ions were implanted with a total fluence of 6 x 10^17 ions/m^2 into lithium niobate crystals by way of a sequential implantation at different energies of 95, 100 and 105 MeV respectively through an energy retarder Fe foil to get a uniform Fe doping of about few microns from the surface. The implanted crystals were then annealed in air in the range 200\u2013400 \ub0C for different durations to promote the crystalline quality that was damaged by implantation. In order to understand the basic phenomena underlying the implantation process, compositional in-depth profiles obtained by the secondary ion mass spectrometry were correlated to the structural properties of the implanted region measured by the high resolution X- ray diffraction depending on the process parameters. The optimised preparation conditions are outlined in order to recover the crystalline quality, essential for integrated photorefractive applications

    T-junction droplet generator realised in lithium niobate crystals by laser ablation

    No full text
    A femtosecond laser at 800 nm was used to create micro-fluidic circuits on lithium niobate (LiNbO3) substrates by means of laser ablation, using different scanning velocities (100-500 μm/s) and laser pulse energies (1-20 μJ). The T-junction geometry was exploited to create on y-cut LiNbO3 crystals a droplet generator, whose microfluidic performance was characterized in a wide range of droplet generation frequencies, from few Hz to about 1 kHz
    corecore