426 research outputs found

    Developement of real time diagnostics and feedback algorithms for JET in view of the next step

    Full text link
    Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model–based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with ITBs. Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Real-time identification of the current density profile in the JET Tokamak: method and validation

    Get PDF
    International audienceThe real-time reconstruction of the plasma magnetic equilibrium in a Tokamak is a key point to access high performance regimes. Indeed, the shape of the plasma current density profile is a direct output of the reconstruction and has a leading effect for reaching a steady-state high performance regime of operation. In this paper we present the methodology followed to identify numerically the plasma current density in a Tokamak and its equilibrium. In order to meet the real-time requirements a C++ software has been developed using the combination of a finite element method, a nonlinear fixed point algorithm associated to a least square optimization procedure. The experimental measurements that enable the identification are the magnetics on the vacuum vessel, the interferometric and polarimetric measurements on several chords and the motional Stark effect. Details are given about the validation of the reconstruction on the JET tokamak, either by comparison with 'off-line' equilibrium codes or real time software computing global quantities

    Timbre brownfield prioritization tool to support effective brownfield regeneration.

    Get PDF
    In the last decade, the regeneration of derelict or underused sites, fully or partly located in urban areas (or so called “brownfields”), has become more common, since free developable land (or so called “greenfields”) has more and more become a scare and, hence, more expensive resource, especially in densely populated areas. Although the regeneration of brownfield sites can offer development potentials, the complexity of these sites requires considerable efforts to successfully complete their revitalization projects and the proper selection of promising sites is a pre-requisite to efficiently allocate the limited financial resources. The identification and analysis of success factors for brownfield sites regeneration can support investors and decision makers in selecting those sites which are the most advantageous for successful regeneration. The objective of this paper is to present the Timbre Brownfield Prioritization Tool (TBPT), developed as a web-based solution to assist stakeholders responsible for wider territories or clusters of brownfield sites (portfolios) to identify which brownfield sites should be preferably considered for redevelopment or further investigation. The prioritization approach is based on a set of success factors properly identified through a systematic stakeholder engagement procedure. Within the TBPT these success factors are integrated by means of a Multi Criteria Decision Analysis (MCDA) methodology, which includes stakeholders' requalification objectives and perspectives related to the brownfield regeneration process and takes into account the three pillars of sustainability (economic, social and environmental dimensions). The tool has been applied to the South Moravia case study (Czech Republic), considering two different requalification objectives identified by local stakeholders, namely the selection of suitable locations for the development of a shopping centre and a solar power plant, respectively. The application of the TBPT to the case study showed that it is flexible and easy to adapt to different local contexts, allowing the assessors to introduce locally relevant parameters identified according to their expertise and considering the availability of local data

    Observation of confined current ribbon in JET plasmas

    Get PDF
    we report the identification of a localised current structure inside the JET plasma. It is a field aligned closed helical ribbon, carrying current in the same direction as the background current profile (co-current), rotating toroidally with the ion velocity (co-rotating). It appears to be located at a flat spot in the plasma pressure profile, at the top of the pedestal. The structure appears spontaneously in low density, high rotation plasmas, and can last up to 1.4 s, a time comparable to a local resistive time. It considerably delays the appearance of the first ELM.Comment: 10 pages, 6 figure

    A new generation of real-time systems in the JET tokamak

    Get PDF
    Recently a new recipe for developing and deploying real-time systems has become increasingly adopted in the JET tokamak. Powered by the advent of x86 multi-core technology and the reliability of the JET’s well established Real-Time Data Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide realtime performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests’ (IRQs) affinities together with the kernel’s CPU isolation mechanism allows to obtain either soft or hard real-time behavior depending on the synchronization mechanism adopted. Finally, the Multithreaded Application Real-Time executor (MARTe) framework is used for building applications particularly optimised for exploring multicore architectures. In the past year, four new systems based on this philosophy have been installed and are now part of the JET’s routine operation. The focus of the present work is on the configuration and interconnection of the ingredients that enable these new systems’ real-time capability and on the impact that JET’s distributed real-time architecture has on system engineering requirements, such as algorithm testing and plant commissioning. Details are given about the common real-time configuration and development path of these systems, followed by a brief description of each system together with results regarding their real-time performance. A cycle time jitter analysis of a user-space MARTe based application synchronising over a network is also presented. The goal is to compare its deterministic performance while running on a vanilla and on a Messaging Real time Grid (MRG) Linux kernel

    SPACA9 is a lumenal protein of human ciliary singlet and doublet microtubules

    Get PDF
    The cilium-centrosome complex contains triplet, doublet, and singlet microtubules. The lumenal surfaces of each microtubule within this diverse array are decorated by microtubule inner proteins (MIPs). Here, we used single-particle cryo-electron microscopy methods to build atomic models of two types of human ciliary microtubule: the doublet microtubules of multiciliated respiratory cells and the distal singlet microtubules of monoflagellated human spermatozoa. We discover that SPACA9 is a polyspecific MIP capable of binding both microtubule types. SPACA9 forms intralumenal striations in the B tubule of respiratory doublet microtubules and noncontinuous spirals in sperm singlet microtubules. By acquiring new and reanalyzing previous cryo-electron tomography data, we show that SPACA9-like intralumenal striations are common features of different microtubule types in animal cilia. Our structures provide detailed references to help rationalize ciliopathy-causing mutations and position cryo-EM as a tool for the analysis of samples obtained directly from ciliopathy patients

    Identification of most relevant variables and processes to assess the environmental impacts of remediation technologies along their life cycles: Focus on the waste management scenarios

    Get PDF
    The application of Life Cycle Assessment (LCA) to remediation technologies is still not a consolidated practice and it is especially lacking in the assessment of the environmental impacts associated to the management of the waste produced during remediation. This study aims at addressing these methodological gaps by identifying the typologies of waste typically generated during the remediation of a contaminated site and classifying them according to the European Waste Catalogue (EWC) codes. Thereafter, the following steps are: (i) the identification of the waste management scenarios (WMSs) applicable to the identified waste typologies, (ii) the selection of Life Cycle Assessment processes that can be used to assess the impacts of the different WMSs and (iii) the quantification and comparison of the environmental impacts caused by the different WMSs applied considering hazardousness levels to which the same waste may belong in relation to its contamination levels and characteristics: inert, non-hazardous and hazardous waste (Waste Framework Directive 2008/98/EC). As results, a matrix reporting the classes and typologies of waste, their EWC codes, their different WMSs and the suitable LCA processes from the Ecoinvent database that can be applied to each EWC within a specific WMS, has been developed. Additionally, the comparative assessment of the impacts caused by the Ecoinvent processes applicable to the same waste typology within the same WMS has been performed to support the selection of the most appropriate WMS case by case

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
    corecore