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 

Abstract—The real-time reconstruction of the plasma 
magnetic equilibrium in a Tokamak is a key point to access 
high performance regimes. Indeed, the shape of the plasma 
current density profile is a direct output of the reconstruction 
and has a leading effect for reaching a steady-state high 
performance regime of operation. In this paper we present the 
methodology followed to identify numerically the plasma 
current density in a Tokamak and its equilibrium. In order to 
meet the real-time requirements a C++ software has been 
developed using the combination of a finite element method, a 
nonlinear fixed point algorithm associated to a least square 
optimization procedure. The experimental measurements that 
enable the identification are the magnetics on the vacuum 
vessel, the interferometric and polarimetric measurements on 
several chords and the motional Stark effect. Details are given 
about the validation of the reconstruction on the JET tokamak, 
either by comparison with ‘off-line’ equilibrium codes or real 
time software computing global quantities. 

I. INTRODUCTION 

N present days tokamaks the shape of the plasma 
boundary is routinely identifiable in real-time in less than 

few milliseconds using a set of magnetic and diamagnetic 
coils spread around the vessel [1]. This information is 
mainly used for controlling the plasma shape in real-time 
during a plasma discharge using coils current in a feedback 
control loop. The idea is to achieve a required shape and to 
maintain it in a stationary manner in order to avoid for 
example sudden termination of the plasma when the plasma 
touches the first wall. In JET the so-called XLOC code is 
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used routinely for plasma shape control. Based on this JET 
flux boundary code confinement parameters are deduced 
like the diamagnetic energy, the internal inductance and 
plasma separatrix geometry in less than 1ms. But with this 
algorithm it is not possible to compute the internal magnetic 
flux configuration which is needed if we want to analyze the 
phenomenon occurring in the interior of the plasma. In this 
case the only way to get access to the current density profile 
is to use off-line codes that can compute accurately the 
profile but with no possibility to act on it. This is rather a 
strong limitation because we know from the analysis 
performed that the shape of the current density profile is one 
of the key element to enhanced the plasma performances. 
We have seen in particular that non monotonic current 
density profiles can trigger enhanced particles and heat 
confinement [2]. On top of this the current density profile 
presents a resistive diffusion time and react with a delay on 
any variation of the current drive systems. So it is clear that 
by controlling in real time such a profile we ensure stability 
but also performances [3, 4]. The problem of the equilibrium 
of a plasma in a Tokamak is a free boundary problem in 
which the plasma boundary is defined as the last closed 
magnetic flux surface. Inside the plasma, the equilibrium 
equation in an axisymmetric configuration is called the 
Grad-Shafranov equation [5, 6]. The right hand side of this 
equation is a non-linear source which represents the toroidal 
component of the plasma current density. The goal of a real-
time equilibrium code is to identify not only the plasma 
boundary but also the flux surface geometry outside and 
inside of the plasma, the current density profile and derive 
the safety factor ‘q’ and other important parameters from the 
obtained equilibrium. In order to meet the real-time 
requirements, a new version of the code called Equinox has 
been designed and implemented in C++. The code relies on 
tokamak specific software providing flux values on the first 
wall of the vacuum vessel. By means of least-square 
minimization of the difference between magnetic 
measurements and the simulated ones the code identifies the 
source term of the non linear Grad-Shafranov equation. The 
finite element solver uses triangles mesh, the calculation 
being limited to the vacuum chamber. A careful 
implementation leads to execution time less than 60ms per 
iteration on a 2GHz PC, complemented with excellent 
robustness and very good precision (+/- 1cm) of plasma 
boundary for an equilibrium code. In the following, the next 
section is devoted to the mathematical modeling of the 
equilibrium problem in axisymmetric configurations. Then 
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the inverse problem will be addressed. Finally, the 
validation of the results using a database of 130 discharges 
with a large variety of magnetic configurations, plasma 
current and toroidal field strength will be given in the final 
section. Distinction will be made between the Equinox M 
version which is using only magnetic measurements as 
constraints and the Equinox J version which is constrained 
using internal measurement like interferometry, polarimetry, 
and Motional Stark effect data. Validation will be presented 
for the Equinox M version. 

II. THE GRAD-SHAFRANOV EQUATION 

A. Mathematical modeling 

In the presence of a magnetic field B the equations 
governing the plasma equilibrium are first the magnetostatic 
Maxwell’s equations which are satisfied in the whole of 
space (including the plasma itself): 

 

                   











j
B

x

B

)(

0.


                                               (1) 

where  represents the magnetic permeability and j is the 
current density and second the equilibrium for the plasma 
itself .which can be written as follow at the resistive time 
scale [7]: 
                            jxBp                                                (2) 

It is clear from equation (2) that the plasma is in equilibrium 
when the force p due to the kinetic pressure is equal to the 
Lorentz force of the magnetic pressure jxB. As a 
consequence the field lines and the current lines for a plasma 
in equilibrium lie on isobaric surfaces. These surfaces, 
generated by the field lines are called magnetic surfaces. As 
they need to remain within a bounded volume of space it is 
clear that they need to have a toroidal topology. These 
surfaces constitute a set of nested tori. The torus degenerates 
progressively into a curve which is called the magnetic axis 
(innermost torus). In a cylindrical coordinate system (r, z, ) 
where r=0 is the major axis of the torus, the hypothesis of 
axial symmetry consists in assuming that the magnetic field 
B is independent of the toroidal angle. The magnetic field 
is usually decomposed as B=Bp+B where Bp =(Br, Bz) is 
the poloidal component and B is the toroidal component. 
From equation (1) we can define the poloidal flux (r,z) 
such that: 
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If we note e the unit vector in the toroidal direction and f 
the diamagnetic function the poloidal and toroidal 
component of the magnetic field can been written 
respectively as in the following formula: 
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From equation (4) and the second relation of (1) we obtain 
the following expression for jp and jrespectively the 
poloidal and toroidal component of j: 
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The linear elliptic operator *.being defined by 
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In the plasma region relation (2) implies that p and 
are collinear and therefore p is constant on each 
magnetic surface. This can be put in the following 
mathematical form: 
                                    )(pp                                        (7) 

In the same way combining the expression (5) and (2) 
implies immediately that p and f are also collinear and 
therefore f is likewise constant on each magnetic surface 
                                    )(ff                                        (8) 

 The equilibrium relation (2) combined with the expression 
(4) and (5) for B and j implies that: 
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which leads to the so-called Grad-Shafranov equation: 
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with* the linear operator defined by (6) in which  is equal 
to the magnetic permeability 0 of the vacuum. From (5) it is 

clear that the right hand side of the equation (10) represents 
the toroidal component of the plasma current density. It 
involves functions p() and f() which are not directly 
measured inside the plasma. We can also note that in the 
vacuum where no plasma current is present the magnetic 
flux satisfies: 
                                 0*                                         (11) 

 The equilibrium of a plasma in a domain  representing the 
vacuum region is a free boundary problem. The plasma free 
boundary is defined at JET as being a magnetic separatrix 
(hyperbolic line with an X-point X) the region p 
containing the plasma is defined as 
                                   )(, xxp

                (12) 

where b = (X) in the X point configuration (see Fig.1). 
Assuming Dirichlet boundary conditions, h, are given on = 

  which is the poloidal cross section of the vacuum 
vessel, the final equations governing the behaviour of  (r,z) 
inside the vacuum vessel are: 
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with 
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 where the normalized flux is introduced so that A and B are 
defined on the interval [0,1]: 

        





p

p

b 








max

max
                                                   (15) 

p is the characteristic function of  p. 

B. Statement of the inverse problem 

In order to find the plasma equilibrium we need to solve 
the non linear two-dimensional partial differential equation 
(10). The right hand side of this equation is composed of 
two functions representing the pressure function p and the 
diamagnetic function f. The numerical identification 
problem is formulated as a least-square minimization based 
on available measurements with a Tikhonov regularization 
[9]. The experimental measurements that enable the 
identification are the magnetics on the vacuum vessel, the 
interferometric and polarimetric measures on several chords 

and the motional Stark effect. For the magnetic 
measurements the flux loops give the poloidal flux on 
particular nodes Mi such that (Mi)=hi on  
  on    )( ii hM                                  (17)

Thanks to an interpolation (performed by XLOC at JET) 
between the points Mi these measurements provide the 
Dirichlet boundary condition h. The magnetic probes give 
the component of the magnetic poloidal field which is 
tangent to the vacuum vessel
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The interferometric measurements give the density integrals 
over the chords Ci  
                            
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ne represents the electronic density which is approximately 
constant on each flux line. The polarimetric measurements 
give the Faraday rotation of the angle of infrared radiation 
crossing the section of the plasma along the same chords Ci: 
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the component of the poloidal field tangent to Ci is B// and 
d/dn represents the normal derivative of  with respect to Ci. 
The Motional Stark effect (MSE) angle i is taken at 
different points xi=(ri,zi) : 
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The problem is thus resumed to find a solution that 
minimizes the cost function defined as: 
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with 
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with mse the reconstructed measurement and K1 to K3 the 
weighting parameters enabling to give more or less 
importance to the corresponding experimental measurements 
[8]. The inverse problem of the determination of A and B is 
ill-posed. Hence a regularization procedure has to transform 
it into a well-posed one [9]. The Tikhonov regularization 
term J constrains the function A, B and ne to be smooth 
enough and reads: 

      
1

0

2
3

1

0

2
2

1

0

2
1 )('')('')('' dxxndxxBdxxAJ e

          (24) 

where 1, 2 and 3 are the regularizing parameters. It is 
worth mentioning that the electronic density ne does not 
intervene in equation (13). However as soon as we want to 

Fig. 1.  JET Vessel and plasma boundary (blue thick line). Vertical 
and horizontal lines reprensent the polarimetry lines of sight. 



  

use the polarimetric measurements it is necessary to include 
ne in the identification procedure. 

C. Identification and algorithm 

Equation (13) is solved using a finite element method [10]. 
The following formulation of this equation forms the basis 
of the finite element method: 
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The unknown functions A, B, ne are approximated by 
decomposition in a reduced basis. The basis can be made of 
different types of functions (polynomials, B-splines, 
wavelets etc) [11]. In our case we choose B-splines. Let u be 
the vector which contains the coordinates of A, B and ne in 
the chosen basis. The Picard type (fixed point) algorithm is 
then used to solve iteratively the inverse and direct problem. 
The discretisation of the equation (25) can be written as: 

huDK  )(
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where D is the plasma current matrix, 
~

K  is the stiffness 
matrix and h is due to the Dirichlet boundary conditions. 
The discrete inverse optimization problem is to find u 
minimizing the cost function which can be written as 
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while  satisfies (26). The quantity C() represents the 
outputs of the model, k the experimental measurements, 
C() is the observation operator. The matrix  represents 
the regularization terms. In order to solve this problem we 
use an iterative algorithm based on fixed point iterations. At 
the nth iteration n and un are given. The non linear mapping 
between  (u) and u is given by the relation: 
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and the cost function  to be minimized is given by 
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This last equation is used to determine un+1. Then fixed point 
iterations for equation (28) enable to find n+1. 
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Since the algorithm is initialized from the equilibrium at the 
previous time step two or three iterations are usually enough 
to ensure convergence. This leads to a very efficient 
algorithm. In the real-time version of the code the number of 
fixed point iteration is set to two, taking into account that the 
equilibrium does not change so much between two 
consecutive time instances.  
 
 
Validation of the equilibrium reconstruction 

The code installed on JET relies on the boundary code 
reconstruction XLOC [1] which provides the total plasma 
current, the toroidal magnetic field and the magnetic flux 

values and poloidal magnetic field on the first wall of the 
vacuum vessel. This improves the portability of the code to 
other machines since we are not asking for the plasma 
boundary itself. From a practical point of view the boundary 
codes are traditionally required to give an accurate plasma 
boundary even if we can observe local oscillations due to 
high degree polynomial extrapolation used in those codes. 
Hopefully, while using the boundary conditions on the first 
wall we use the values where they are the most accurate, 
while hiding tokamak magnetic measurement specific issues 
in boundary codes. We can see in Fig. 2 the kind of grid that 
we choose and the nodes at the boundary where the inputs 
are computed from the XLOC code. The validation of the 
Equinox code has been performed starting from a database 
of about 130 pulses, well representative of the JET 
discharges with different shape and triangularity of the 
plasma boundary and with global parameter varying in the 
whole JET interval. On top of this the base contains several 
behaviours of the plasma current density profile, starting 
from monotonic q profile, then reversed shear profile and 
finally the extreme case of current hole. For some pulses 
clear MHD signature have been put in evidence and help in 
particular at the validation of the current density profile or 
the safety factor q. 

The strategy of the validation has been applied to the two 
versions of the codes. The first one called Equinox M is the 
version using only the inputs from the magnetic 
measurement via XLOC. This version gives accurate plasma 
geometry and global parameters and does not intend to give 
very precise information about the q profile. The second 
version Equinox-J includes internal measurements like 
polarimetry or MSE and is able to identify hollow plasma 
current density profiles (validation not showed in this paper) 

 
 
Fig. 2.  Equinox Grid used for solving the Grad Shafranov equation 



  

 

The validation of the Equinox_M version has been 
performed mainly using the results of the well assessed 
EFIT equilibrium code [12] constrained by magnetic 
measurements only which is used in a routinely manner at 
JET for intershot analysis. As our code is a free boundary 
code which means that no assumption is made on the plasma 
shape, we are able to compare the shape parameters of our 
reconstruction with the one obtained by XLOC itself.  A 
direct comparison of the plasma Volume and upper 
triangularity is given in Figure 3 and 4 and shows a very 

good agreement in terms of the shape of the plasma. In Fig. 
5 and Fig. 6 the coordinates Rx  and Zx of the X point are 
compared. We can note in particular a very good agreement 
of the Rx and some differences for the Zx. Nevertheless 
these errors are of same order and the origin of the 
differences is unclear (error on the measurement, method…) 
. Global quantities like p and li are compared in Fig7. For 
p the agreement is quite good and some differences can be 
noted for the internal inductance. In figure 8 the time 

evolution of thep+li/2 is given for both EFIT and Equinox 
code and shows again a fairly good agreement. This proves 
a very good reconstruction of the pressure term and looking 
at the difference observed for li (see fig 9) the medium value 
is about 0.1. In order to quantify the error and the sensivity 

of the output related to the error on the measurements we 
perturbed by 1% the input data of XLOC and get for 
example a deviation of about 0.1 for the li. So the difference 
observed between EFIT and Equinox for the li is of the order 
of the error bars on the results. In terms of q profile  this 
difference is small on the particular case of shot #74937 in 
Fig10. We can note in particular that the main difference 
comes from the qax which is one of the consequences of the 
lack of information coming from the internal part of the 
plasma.   A very interesting test was then  to reconstruct 
from the obtained equilibrium the line integrated density. In 
fact once the geometrical line of sight are known and when 
the plasma equilibrium is obtained, it is possible to solve 
independently the chi-square minimization of the line 
integrated density. Results are given in Fig 11 for shot 
#68690 where a direct comparison between the measured 
chord 3 and the computed one is given. This agreement is 
almost perfect. 

 
 
Fig. 3. Standard deviation between EFIT and Equinox for the plasma 
volume (m3) 

 

 
 
Fig. 4 Comparison between EFIT and Equinox for the upper 
triangularity 

 

 
 
Fig. 5 Comparison between EFIT and Equinox for the R position of 
the X point 

 
 
Fig. 6 Comparison between EFIT and Equinox for the Z position of 
the X point 



  

Finally in order to assess the Equinox reconstruction we 
have used PROTEUS [13] that solves the direct problem of 
the Grad shafranov equation. In that particular case a 

monotonic current density profile was chosen, the 
equilibrium has been reconstructed and PROTEUS 
computed the boundary conditions requested by Equinox. 
Equinox outputs are then compared with the one of 
PROTEUS. A very good agreement is found on the plasma 
volume, li and q profile confirming that the statistic relies on 
a very strong and accurate computation.  
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Fig. 7 Comparison between EFIT and Equinox for the beta poloidal  
(upper figure) and the internal inductance li (lower figure) 

 
 
Fig. 8 Comparison between EFIT, Equinox and XLOC of the 
Shafranov shift. 

 
 
Fig. 9 Comparison between EFIT and Equinox and XLOC of the 
internal inductance 

 
 
Fig. 10 Comparison between EFIT and Equinox of the safety factor 
profile 

 
 
Fig. 11 Comparison between EFIT and Equinox of the line 
integrated density profile chord3. 


