96 research outputs found

    Biodiversity mediates productivity through different mechanisms at adjacent trophic levels

    Get PDF
    Biodiversity may enhance productivity either because diverse communities more often contain productive species (selection effects) or because they show greater complementarity in resource use. Our understanding of how these effects influence community production comes almost entirely from studies of plants. To test whether previous results apply to higher trophic levels, we first used simulations to derive expected contributions of selection and complementarity to production in competitive assemblages defined by either neutral interactions, dominance, or a trade-off between growth and competitive ability. The three types of simulated assemblages exhibited distinct interaction signatures when diversity effects were partitioned into selection and complementarity components. We then compared these signatures to those of experimental marine communities. Diversity influenced production in fundamentally different ways in assemblages of macroalgae, characterized by growth competition trade-offs, vs. in herbivores, characterized by dominance. Forecasting the effects of changing biodiversity in multitrophic ecosystems will require recognizing that the mechanism by which diversity in. fluences functioning can vary among trophic levels in the same food web

    Feeding spectra and activity of the freshwater crab Trichodactylus kensleyi (Decapoda: Brachyura: Trichodactylidae) at La Plata basin

    Get PDF
    Background: In inland water systems, it is important to characterize the trophic links in order to identify the ‘trophic species’ and, from the studies of functional diversity, understand the dynamics of matter and energy in these environments. The aim of this study is to analyze the natural diet of Trichodactylus kensleyi of subtropical rainforest streams and corroborate the temporal variation in the trophic activity during day hours. Results: A total of 15 major taxonomic groups were recognized in gut contents. The index of relative importance identified the following main prey items in decreasing order of importance: vegetal remains, oligochaetes, chironomid larvae, and algae. A significant difference was found in the amount of full stomachs during day hours showing a less trophic activity at midday and afternoon. The index of relative importance values evidenced the consumption of different prey according to day moments. Results of the gut content indicate that T. kensleyi is an omnivorous crab like other trichodactylid species. Opportunistic behavior is revealed by the ingestion of organisms abundant in streams such as oligochaetes and chironomid larvae. The consumption of allochthonous plant debris shows the importance of this crab as shredder in subtropical streams. However, the effective assimilation of plant matter is yet unknown in trichodactylid crabs. Conclusions: This research provides knowledge that complements previous studies about trophic relationships of trichodactylid crabs and supported the importance of T. kensleyi in the transference of energy and matter from benthic community and riparian sources to superior trophic levels using both macro- and microfauna.Fil: Williner, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina. Universidad Nacional del Litoral. Facultad de Humanidades y Ciencias; ArgentinaFil: de Azevedo Carvalho, Debora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Collins, Pablo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentin

    Modulation of growth and angiogenic potential of oral squamous carcinoma cells in vitro using salvianolic acid B

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previous studies showed that Salvianolic acid B (Sal B) inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters and such anti-cancer effects might be related to the inhibition of angiogenesis. This study was aimed to further investigate the anti-proliferative effect of Sal B on the most common type of oral cancer, oral squamous cell carcinoma (OSCC) and the possible mechanisms of action with respect to angiogenesis inhibition.</p> <p>Methods</p> <p>Two well-characterized oral squamous cell carcinoma cell lines, CAL27 and SCC4, and premalignant leukoplakia cells were treated with different concentrations of Sal B. Cytotoxicity was assessed by MTT assay. cDNA microarray was utilized to evaluate the expression of 96 genes known to be involved in modulating the biological processes of angiogenesis. Real-time reverse transcription-polymerase chain reaction analysis was conducted to confirm the cDNA microarray data.</p> <p>Results</p> <p>Sal B induced growth inhibition in OSCC cell lines but had limited effects on premalignant cells. A total of 17 genes showed a greater than 3-fold change when comparing Sal B treated OSCC cells to the control. Among these genes, HIF-1α, TNFα and MMP9 are specifically inhibited, expression of THBS2 was up-regulated.</p> <p>Conclusions</p> <p>Sal B has inhibitory effect on OSCC cell growth. The antitumor effect can be attributed to anti-angiogenic potential induced by a decreased expression of some key regulator genes of angiogenesis. Sal B may be a promising modality for treating oral squamous cell carcinoma.</p

    Effects of Trophic Skewing of Species Richness on Ecosystem Functioning in a Diverse Marine Community

    Get PDF
    Widespread overharvesting of top consumers of the world’s ecosystems has “skewed” food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions

    Loess plateau storage of northeastern Tibetan plateau-derived Yellow River sediment

    Get PDF
    Marine accumulations of terrigenous sediment are widely assumed to accurately record climatic- and tectonic-controlled mountain denudation and play an important role in understanding late Cenozoic mountain uplift and global cooling. Underpinning this is the assumption that the majority of sediment eroded from hinterland orogenic belts is transported to and ultimately stored in marine basins with little lag between erosion and deposition. Here we use a detailed and multi-technique sedimentary provenance dataset from the Yellow River to show that substantial amounts of sediment eroded from Northeast Tibet and carried by the river’s upper reach are stored in the Chinese Loess Plateau and the western Mu Us desert. This finding revises our understanding of the origin of the Chinese Loess Plateau and provides a potential solution for mismatches between late Cenozoic terrestrial sedimentation and marine geochemistry records, as well as between global CO2 and erosion records

    The natural exclusion of red deer from large boulder grazing refugia and the consequences for saxicolous bryophyte and lichen ecology

    Get PDF
    Large boulder grazing refugia permitted comparison of saxicolous bryophyte and lichen assemblages with those boulder tops accessible to red deer (Cervus elaphus) on a sporting estate in northwest Scotland. Plant succession was predicted to occur unchecked by grazing on the tops of these large boulders with cascading effects on bryophytes and lichens—assuming boulders had been in place over the same time period. Fifty pairs of boulders (one ≥2 m and the other accessible to red deer) were selected at random from various locations below north-facing crags. Percentage cover of each bryophyte and lichen species was estimated from three randomly placed quadrats on each boulder top. Due consideration was given to the influence of island biogeography theory in subsequent model simplification. Mean shrub cover and height, leaf-litter, bryophyte cover and bryophyte species richness were significantly higher within quadrats on large boulder tops that naturally excluded red deer. Lichen cover and lichen species richness were significantly higher on boulder tops accessible to red deer. Lichen cover was in a significant negative relationship with bryophyte cover, shrub cover and litter cover. Bryophyte cover showed a significant positive relationship with shrub height but there was an optimum shrub cover. Natural exclusion of red deer from the tops of large boulders has facilitated plant succession. The results suggest that grazing arrests the lithosere on boulder tops accessible to red deer at an early plagioclimax favouring saxicolous lichens. The results are relevant to situations where red deer might be excluded from boulder fields that hold lichen assemblages of conservation value

    Averages of b-hadron, c-hadron, and tau-lepton properties as of 2018 Heavy Flavor Averaging Group (HFLAV)

    Get PDF
    This paper reports world averages of measurements of b-hadron, c-hadron, and τ -lepton properties obtained by the Heavy Flavour Averaging Group using results available through September 2018. In rare cases, significant results obtained several months later are also used. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, C P violation parameters, parameters of semileptonic decays, and Cabibbo–Kobayashi–Maskawa matrix elements

    Quantifying fracture geometry with X-ray tomography: Technique of Iterative Local Thresholding (TILT) for 3D image segmentation

    Get PDF
    This paper presents a new method—the Technique of Iterative Local Thresholding (TILT)—for processing 3D X-ray computed tomography (xCT) images for visualization and quantification of rock fractures. The TILT method includes the following advancements. First, custom masks are generated by a fracture-dilation procedure, which significantly amplifies the fracture signal on the intensity histogram used for local thresholding. Second, TILT is particularly well suited for fracture characterization in granular rocks because the multi-scale Hessian fracture (MHF) filter has been incorporated to distinguish fractures from pores in the rock matrix. Third, TILT wraps the thresholding and fracture isolation steps in an optimized iterative routine for binary segmentation, minimizing human intervention and enabling automated processing of large 3D datasets. As an illustrative example, we applied TILT to 3D xCT images of reacted and unreacted fractured limestone cores. Other segmentation methods were also applied to provide insights regarding variability in image processing. The results show that TILT significantly enhanced separability of grayscale intensities, outperformed the other methods in automation, and was successful in isolating fractures from the porous rock matrix. Because the other methods are more likely to misclassify fracture edges as void and/or have limited capacity in distinguishing fractures from pores, those methods estimated larger fracture volumes (up to 80 %), surface areas (up to 60 %), and roughness (up to a factor of 2). These differences in fracture geometry would lead to significant disparities in hydraulic permeability predictions, as determined by 2D flow simulations
    corecore