63 research outputs found
Genetic Mapping of Social Interaction Behavior in B6/MSM Consomic Mouse Strains
Genetic studies are indispensable for understanding the mechanisms by which individuals develop differences in social behavior. We report genetic mapping of social interaction behavior using inter-subspecific consomic strains established from MSM/Ms (MSM) and C57BL/6J (B6) mice. Two animals of the same strain and sex, aged 10 weeks, were introduced into a novel open-field for 10 min. Social contact was detected by an automated system when the distance between the centers of the two animals became less than ~12 cm. In addition, detailed behavioral observations were made of the males. The wild-derived mouse strain MSM showed significantly longer social contact as compared to B6. Analysis of the consomic panel identified two chromosomes (Chr 6 and Chr 17) with quantitative trait loci (QTL) responsible for lengthened social contact in MSM mice and two chromosomes (Chr 9 and Chr X) with QTL that inhibited social contact. Detailed behavioral analysis of males identified four additional chromosomes associated with social interaction behavior. B6 mice that contained Chr 13 from MSM showed more genital grooming and following than the parental B6 strain, whereas the presence of Chr 8 and Chr 12 from MSM resulted in a reduction of those behaviors. Longer social sniffing was observed in Chr 4 consomic strain than in B6 mice. Although the frequency was low, aggressive behavior was observed in a few pairs from consomic strains for Chrs 4, 13, 15 and 17, as well as from MSM. The social interaction test has been used as a model to measure anxiety, but genetic correlation analysis suggested that social interaction involves different aspects of anxiety than are measured by open-field test
Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study
[EN] Regulated expression of the Ena1 Na+-ATPase is a crucial event for adaptation to high
salt and/or alkaline pH stress in the budding yeast Saccharomyces cerevisiae. ENA1
expression is under the control of diverse signaling pathways, including that mediated
by the calcium-regulatable protein phosphatase calcineurin and its downstream
transcription factor Crz1. We present here a quantitative study of the expression of
Ena1 in response to alkalinization of the environment and we analyze the contribution
of Crz1 to this response. Experimental data and mathematical models substantiate the
existence of two stress-responsive Crz1-binding sites in the ENA1 promoter and
estimate that the contribution of Crz1 to the early response of the ENA1 promoter is
about 60%. The models suggest the existence of a second input with similar kinetics,
which would be likely mediated by high pH-induced activation of the Snf1 kinase.This work was supported by grants BFU2011-30197-C3-01, BFU2014-54591-C2-1-P and EUI2009-04147 (SysMo2) to JA. (Ministry of Industry and Competitivity, Spain, and Fondo Europeo de Desarrollo Regional [FEDER]). JA is the recipient of an Ajut 2014SGR-4 award (Generalitat de Catalunya). DC was recipient of a predoctoral fellowship from the Spanish Ministry of Education. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Petrezsélyová, S.; López-Malo, M.; Canadell, D.; Roque, A.; Serra-Cardona, A.; Marques Romero, MC.; Vilaprinyó, E.... (2016). Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study. PLoS ONE. 11(6):e0158424-e0158424. https://doi.org/10.1371/journal.pone.0158424Se0158424e015842411
Comunicação terapêutica na Enfermagem: dificuldades para o cuidar de idosos com câncer
The pace of life for forest trees
This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via the DOI in this record Data availability statement: The plot-level input data and R code that are needed to replicate our analyses are available at https://github/Lalasia/pace_of_life.com and doi.org/10.5281/zenodo.11615767 (56). The tree-by-tree observations used to generate the plot-level input data are also published with this paper. However, this file does not include data from networks with sensitive species or a need for indigenous data sovereignty. These data are available upon request for research purposes by emailing the following networks: Alberta Agriculture and Forestry Division https://www.alberta.ca/permanent-sample-plots-program, email: [email protected], Saskatchewan Minister of Environment Forest Service Branch https://www.saskatchewan.ca/contact-us, ForestGeo https://forestgeo.si.edu/explore-data ((20–22), and ForestPlots https://forestplots.net/en/using-forestplots/in-the-field, email: [email protected] (18, 19).Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon balance. Yet, we lack a unified understanding of how such trade-offs vary across the world's forests. By mapping life history traits for a wide range of species across the Americas, we reveal considerable variation in life expectancies from 10 centimeters in diameter (ranging from 1.3 to 3195 years) and show that the pace of life for trees can be accurately classified into four demographic functional types. We found emergent patterns in the strength of trade-offs between growth and longevity across a temperature gradient. Furthermore, we show that the diversity of life history traits varies predictably across forest biomes, giving rise to a positive relationship between trait diversity and productivity. Our pan-latitudinal assessment provides new insights into the demographic mechanisms that govern the carbon turnover rate across forest biomes.European Union Horizon 2020Royal SocietyNatural Environment Research Council (NERC
Antioxidant and Acetylcholinesterase Response to Repeated Malathion Exposure in Rat Cerebral Cortex and Hippocampus
Recommended from our members
Frequency of frontotemporal dementia gene variants in C9ORF72, MAPT, and GRN in academic versus commercial laboratory cohorts.
BackgroundFrontotemporal lobar degeneration (FTLD) is a leading cause of dementia, and elucidating its genetic underpinnings is critical. FTLD research centers typically recruit patient cohorts that are limited by the center's specialty and the ways in which its geographic location affects the ethnic makeup of research participants. Novel sources of data are needed to get population estimates of the contribution of variants in known FTLD-associated genes.MethodsWe compared FLTD-associated genetic variants in microtubule-associated protein tau (MAPT), progranulin (GRN), and chromosome nine open reading frame 72 (C9ORF72) from an academic research cohort and a commercial clinical genetics laboratory. Pathogenicity was assessed using guidelines of the American College of Medical Genetics and Genomics and a rule-based DNA variant assessment system. We conducted chart reviews on patients with novel or rare disease-associated variants.ResultsA total of 387 cases with FTLD-associated variants from the commercial (n=2,082) and 78 cases from the academic cohort (n=2,089) were included for analysis. In the academic cohort, the most frequent pathogenic variants were C9ORF72 expansions (63%, n=49), followed by GRN (26%, n=20) and MAPT (11%, n=9). Each gene's contribution to disease was similarly ranked in the commercial laboratory but differed in magnitude: C9ORF72 (89%, n=345), GRN (6%, n=24), and MAPT (5%, n=19). Of the 37 unique GRN/MAPT variants identified, only six were found in both cohorts. Clinicopathological data from patients in the academic cohort strengthened classification of two novel GRN variant as pathogenic (p.Pro166Leufs*2, p.Gln406*) and one GRN variant of unknown significance as a possible rare risk variant (p.Cys139Arg).ConclusionDifferences in gene frequencies and identification of unique pathogenic alleles in each cohort demonstrate the importance of data sharing between academia and community laboratories. Using shared data sources with well-characterized clinical phenotypes for individual variants can enhance interpretation of variant pathogenicity and inform clinical management of at-risk patients and families
Effect of Montmorillonite Superfine Composite on Growth Performance and Tissue Lead Level in Pigs
RETRACTED ARTICLE: Adsorptive removal of cadmium from aqueous media using Posidonia oceanica biomass: equilibrium, dynamic and thermodynamic studies
Effects of Montmorillonite on Pb Accumulation, Oxidative Stress, and DNA Damage in Tilapia (Oreochromis niloticus) Exposed to Dietary Pb
Modeling Social and Geopolitical Disasters as Extreme Events: A Case Study Considering the Complex Dynamics of International Armed Conflicts
- …
