64 research outputs found

    Biochar + AD exerts a biostimulant effect in the yield of horticultural crops and improves bacterial biodiversity and species richness in the rhizosphere

    Get PDF
    [EN] Organic fertilisers are gaining prominence in advanced agri-systems due to the need for alternatives to the most pollutant agricultural inputs, contributing to sustainable agriculture. The objective of this study was to analyse the agronomic effect of a biochar non-additivated and additivated with anaerobic digestate (AD) on the soil microbiome in melon and pepper crops at the field scale, hypothesising that the synergy between biochar and the additive confers additional benefits to the crop. Two doses of biochar (250 and 500 kg ha−1) and two doses of additive with respect to biochar (5 and 10% v:w) were tested. The highest yield was observed for a reduced dose of mineral fertilisation (NPK −20%) with biochar + AD at the highest dose of additive: a biochar dose of 250 kg/ha with 10% AD for the melon crop and a biochar dose of 500 kg ha−1 with 10% AD for the pepper crop. Specifically, the yield increase compared with the control, which only received NPK, was a 33% increase in melon and 18% in pepper. The microbiome of the bulk soil was not modified by biochar + AD, but the composition of the rhizosphere microbiome changed, emerging plant growth-promoting rhizobacteria (PGPR) or increasing its relative abundance (e.g. Arthrobacter, Mitsuaria or Bacillus genus). We have demonstrated a positive correlation between yield and fruit quality parameters, and the presence of cluster of bacteria with predominance of known PGPR genera, that have been boosted by the treatments with biochar + AD. Thus, we hypothesize that the improved yield and fruit quality is in part due to the rhizosphere bacteria community enhancement.S

    Spectroscopic and multivariate data-based method to assess the metabolomic fingerprint of Mediterranean plants

    Get PDF
    Introduction: Most secondary metabolites from plants have a prominent defensive role and repellency against predators and microbial pathogens. These properties largely vary among plant species and offer potential applications as biologically active compounds in medicine as well in agriculture. Objectives: We propose a new procedure that combine different spectroscopic techniques and multivariate data analysis to determine the chemical composition and the relative amounts of each metabolites and/or each class of organic compounds. The approach was used for a rapid identification of secondary metabolites from leaf and root of eight Mediterranean plants species. Methodology: The polar and the apolar extracts of two leaves and roots of each plant were analysed by proton nuclear magnetic resonance (1H-NMR) and gas chromatography coupled to mass spectrometry (GC–MS), respectively. Multivariate data analysis was used for a faster interpretation of data. Results: The metabolic fingerprint of the Mediterranean plants, Acanthus mollis, Dittrichia viscosa, Festuca drymeja, Fraxinus ornus, Fagus sylvatica, Hedera helix, Quercus ilex, and Typha latifolia, showed a complex chemical composition, being specific for each species and plant tissue. Two alditols, mannitol and quercitol, were found in manna ash (Fraxinus ornus) and holm oak (Q. ilex) polar leaf extracts, respectively. The highest levels of aromatic compounds were found in D. viscosa and T. latifolia. Fatty acids were the predominant class of compounds in all apolar extracts under investigation. Triterpene were almost exclusively found in roots, except for holm oak, where they constitute 58% of total extract. Steroids were widespread in leaf extracts. Conclusion: The major advantages of the proposed approach are versatility and rapidity, thus making it suitable for a fast comparison among species and plant tissue types.</p

    Linking bacterial and eukaryotic microbiota to litter chemistry: Combining next generation sequencing with 13 C CPMAS NMR spectroscopy

    Get PDF
    Microbial succession over decomposing litter is controlled by biotic interactions, dispersal limitation, grazing pressure, and substrate chemical changes. Recent evidence suggests that the changes in litter chemistry and microbiome during decomposition are interdependent. However, most previous studies separately addressed the microbial successional dynamics or the molecular changes of decomposing litter. Here, we combined litter chemical characterization by 13 C NMR spectroscopy with next generation sequencing to compare leaf litter chemistry and microbiome dynamics using 30 litter types, either fresh or decomposed for 30 and 180 days. We observed a decrease of cellulose and C/N ratio during decomposition, while lignin content and lignin/N ratio showed the opposite pattern. 13 C NMR revealed significant chemical changes as microbial decomposition was proceeding, with a decrease in O-alkyl C and an increase in alkyl C and methoxyl C relative abundances. Overall, bacterial and eukaryotic taxonomical richness increased with litter age. Among Bacteria, Proteobacteria dominated all undecomposed litters but this group was progressively replaced by members of Actinobacteria, Bacteroidetes, and Firmicutes. Nitrogen-fixing genera such as Beijerinckia and Rhizobium occurred both in undecomposed as well as in aged litters. Among Eukarya, fungi belonging to the Ascomycota phylum were dominant in undecomposed litter with the typical phyllospheric genus Aureobasidium. In aged litters, phyllospheric species were replaced by zygomycetes and other ascomycetous and basidiomycetous fungi. Our analysis of decomposing litter highlighted an unprecedented, widespread occurrence of protists belonging to the Amebozoa and Cercozoa. Correlation network analysis showed that microbial communities are non-randomly structured, showing strikingly distinct composition in relation to litter chemistry. Our data demonstrate that the importance of litter chemistry in shaping microbial community structure increased during the decomposition process, being of little importance for freshly fallen leaves

    Climatic and anthropogenic factors explain the variability of Fagus sylvatica treeline elevation in fifteen mountain groups across the Apennines

    Get PDF
    Abstract Background Fagus sylvatica forms the treeline across the Apennines mountain range, with an average elevation of 1589 m a.s.l. Previous studies evidenced that the current position of the treeline in the Apennines is heavily depressed as a result of a complex interaction between climatic factors and the past human pressure. In this study we correlated treeline elevation in the fifteen major mountain groups in the Apennines with selected climatic, geomorphological, and human disturbance variables in order to investigate in detail the site-specific features affecting the current treeline distribution. Results Treeline elevation was lowest in the North Italy (Apuan Alps), while the highest treeline was found in Central Italy (Simbruini). An absolute maximum treeline elevation of F. sylvatica exceeding 2000 m a.s.l. was found on 13 mountain peaks in Central and Southern Italy. Noteworthy, treeline elevation was largely lower on warmer south-facing slopes compared to northern slopes, with values several hundred meters lower in the Gran Sasso and Velino-Sirente. Although the causes of this pattern are still unknown, we argue that treeline elevation on south-facing slopes may be limited by the combination of climatic constraints (i.e. summer drought) and human disturbance. Evidence of a pervasive anthropogenic effect depressing treeline elevation was found in the North (Apuan Alps) Central (Gran Sasso, Velino-Sirente, Sibillini) and Southern part of Apennines (Pollino). By contrast, treeline elevation of the Laga, Simbruini, and Orsomarso mountain groups appears less affected by past anthropogenic disturbance. Finally, we recorded in the several mountain groups (i.e. Majella, Marsicani and Pollino) the coexistence of very depressed treelines just a few kilometers away from much higher treelines, among the highest ever recorded for F. sylvatica. Conclusions Finally, we argue that F. sylvatica treeline across the Apennines is locally shaped both by the interaction of low temperatures experienced by the species in its earliest life stages in snow-free open spaces with summer soil water depletion and human disturbance

    Impact of prescribed burning, mowing and abandonment on a Mediterranean grassland: A 5-year multi-kingdom comparison

    Get PDF
    Mediterranean grasslands are semi-natural, fire-prone, species-rich ecosystems that have been maintained for centuries through a combination of fire, grazing, and mowing. Over the past half century, however, grasslands have faced numerous threats, including the abandonment of traditional agro-pastoral practices. Our hypothesis was that mowing and prescribed burning are management practices potentially effective in counteracting the reduction of plant diversity triggered by land abandonment. However, the long-term effects of such management practices on plant communities and soil microbiota in Mediterranean grassland remain poorly studied. Here, we conducted a 5-year field experiment comparing prescribed fire, vegetation mowing, and abandonment in a fire-prone Mediterranean grassland in southern Italy in order to evaluate the capability of such management strategies to counteract the detrimental impacts of land abandonment on plant diversity and the associated increase of wildfire. We combined vegetation analysis and soil chemical characterization and several microbiota analyses, including microbial biomass and respiration, arthropod community, and high-throughput sequencing of bacterial and eukaryotic rRNA gene markers. Burning and mowing significantly increased plant species richness and diversity compared to abandonment plots, reducing the abundance of perennial tall grasses in favour of short-lived species. Standing litter followed the same trend, being 3.8-fold greater and largely composed of grass remains in the abandoned compared to burnt and mowed plots. In the soil, prescribed burning caused significant increase in pH, a reduction in organic carbon, total N, and cation exchange capacity. Diversity and taxonomic composition of bacterial and fungal microbiota was affected by burning and mowing treatments. Abandonment caused shifts of microbiota towards a fungal-dominated system, composed of late successional fungi of the Basidiomycota. Fast-growing and putative fungal pathogens were more abundant under burnt and mowed treatments. Soil arthropods were influenced by vegetation and microbiota changes, being strongly reduced in mowed plots. Our study demonstrated that grassland abandonment promotes the spread of tall grasses, reducing plant diversity and increasing the risk of wildfire, while prescribed burning and mowing are effective in counteracting such negative effects

    Predicting needlestick and sharps injuries in nursing students: Development of the SNNIP scale

    Get PDF
    © 2020 The Authors. Nursing Open published by John Wiley & Sons Ltd. Aim: To develop an instrument to investigate knowledge and predictive factors of needlestick and sharps injuries (NSIs) in nursing students during clinical placements. Design: Instrument development and cross-sectional study for psychometric testing. Methods: A self-administered instrument including demographic data, injury epidemiology and predictive factors of NSIs was developed between October 2018–January 2019. Content validity was assessed by a panel of experts. The instrument's factor structure and discriminant validity were explored using principal components analysis. The STROBE guidelines were followed. Results: Evidence of content validity was found (S-CVI 0.75; I-CVI 0.50–1.00). A three-factor structure was shown by exploratory factor analysis. Of the 238 participants, 39% had been injured at least once, of which 67.3% in the second year. Higher perceptions of “personal exposure” (4.06, SD 3.78) were reported by third-year students. Higher scores for “perceived benefits” of preventive behaviours (13.6, SD 1.46) were reported by second-year students

    Predicting needlestick and sharps injuries in nursing students: Development of the SNNIP scale

    Get PDF

    PRISM (Polarized Radiation Imaging and Spectroscopy Mission): A White Paper on the Ultimate Polarimetric Spectro-Imaging of the Microwave and Far-Infrared Sky

    Full text link
    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in response to the Call for White Papers for the definition of the L2 and L3 Missions in the ESA Science Programme. PRISM would have two instruments: (1) an imager with a 3.5m mirror (cooled to 4K for high performance in the far-infrared---that is, in the Wien part of the CMB blackbody spectrum), and (2) an Fourier Transform Spectrometer (FTS) somewhat like the COBE FIRAS instrument but over three orders of magnitude more sensitive. Highlights of the new science (beyond the obvious target of B-modes from gravity waves generated during inflation) made possible by these two instruments working in tandem include: (1) the ultimate galaxy cluster survey gathering 10e6 clusters extending to large redshift and measuring their peculiar velocities and temperatures (through the kSZ effect and relativistic corrections to the classic y-distortion spectrum, respectively) (2) a detailed investigation into the nature of the cosmic infrared background (CIB) consisting of at present unresolved dusty high-z galaxies, where most of the star formation in the universe took place, (3) searching for distortions from the perfect CMB blackbody spectrum, which will probe a large number of otherwise inaccessible effects (e.g., energy release through decaying dark matter, the primordial power spectrum on very small scales where measurements today are impossible due to erasure from Silk damping and contamination from non-linear cascading of power from larger length scales). These are but a few of the highlights of the new science that will be made possible with PRISM.Comment: 20 pages Late

    Exploring Cosmic Origins with CORE: Cosmological Parameters

    Get PDF
    We forecast the main cosmological parameter constraints achievable with theCORE space mission which is dedicated to mapping the polarisation of the CosmicMicrowave Background (CMB). CORE was recently submitted in response to ESA'sfifth call for medium-sized mission proposals (M5). Here we report the resultsfrom our pre-submission study of the impact of various instrumental options, inparticular the telescope size and sensitivity level, and review the great,transformative potential of the mission as proposed. Specifically, we assessthe impact on a broad range of fundamental parameters of our Universe as afunction of the expected CMB characteristics, with other papers in the seriesfocusing on controlling astrophysical and instrumental residual systematics. Inthis paper, we assume that only a few central CORE frequency channels areusable for our purpose, all others being devoted to the cleaning ofastrophysical contaminants. On the theoretical side, we assume LCDM as ourgeneral framework and quantify the improvement provided by CORE over thecurrent constraints from the Planck 2015 release. We also study the jointsensitivity of CORE and of future Baryon Acoustic Oscillation and Large ScaleStructure experiments like DESI and Euclid. Specific constraints on the physicsof inflation are presented in another paper of the series. In addition to thesix parameters of the base LCDM, which describe the matter content of aspatially flat universe with adiabatic and scalar primordial fluctuations frominflation, we derive the precision achievable on parameters like thosedescribing curvature, neutrino physics, extra light relics, primordial heliumabundance, dark matter annihilation, recombination physics, variation offundamental constants, dark energy, modified gravity, reionization and cosmicbirefringence. (ABRIDGED
    • 

    corecore