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Short Abstract for Table of Content 19 

This study was aimed to a rapid and versatile assessment of the metabolomic fingerprint of 20 

Mediterranean plants through an integrated approach of spectroscopic techniques, NMR and GC-21 

MS, and Multivariate Data Analysis. The chemical profile of eight Mediterranean species, largely 22 

used as folk remedy, was analyzed. In addition, the metabolic compositions of leaves and roots 23 

were compared for each species.  24 

  25 
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 26 

ABSTRACT  27 

Introduction – Most secondary metabolites from plants have a prominent defensive role and 28 

repellency against predators and microbial pathogens. These properties largely varies among plant 29 

species and found potential applications as biologically active compounds in medicine as well in 30 

agriculture.   31 

Objectives – We propose a new procedure that combine different spectroscopic techniques and 32 

multivariate data analysis to determine the chemical composition and the relative amounts of each 33 

metabolites and/or each class of organic compounds. The approach was used for a rapid 34 

identification of secondary metabolites from leaf and root of eight Mediterranean plants species.  35 

Methodology – The polar and the apolar extracts of two leaves and roots of each plant were 36 

analyzed by 1H-NMR and GC-MS, respectively. Multivariate Data Analysis was used for a faster 37 

interpretation of data. 38 

Results – The metabolic fingerprint of the Mediterranean plants, Acanthus mollis, Dittrichia 39 

viscosa, Festuca drymeja, Fraxinus ornus, Fagus sylvatica, Hedera helix, Quercus ilex, and Typha 40 

latifolia, showed a complex chemical composition, being specific for each species and plant tissue. 41 

Two alditols, mannitol and quercitol, were found in manna ash (F. ornus) and holm oak (Q. ilex) 42 

polar leaf extracts, respectively. The highest levels of aromatic compounds were found in D. viscosa 43 

and T. latifolia. Fatty acids were the predominant class of compounds in all apolar extracts under 44 

investigation. Triterpene were almost exclusively found in roots, except for holm oak, where they 45 

constitute 58% of total extract. Steroids were widespread in leaf extracts. 46 

Conclusion – The major advantages of the proposed approach are versatility and rapidity, thus 47 

making it suitable for a fast comparison among species and plant tissue types. 48 

  49 
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Introduction 50 

Higher plants produce a great diversity of chemical compounds, which have often a defensive role 51 

and repellence against predators and microbial pathogens.1-3 Moreover, environmental abiotic factors 52 

like extreme temperature, light intensity and UV, shortage in water and minerals supply, as well 53 

osmotic stress can cause the accumulation of specific metabolites in plants tissues.4 54 

Exploitation of plant phytochemical diversity with antimicrobial activity in traditional 55 

medicinal, as well for biological control in agriculture, has been the focus of an increasing number of 56 

studies (Fabricant and Farnsworth, 2001, Koul and Dhaliwal, 2003). 5,6 The study of medicinal plants 57 

provides a scientific basis for the popular use against infectious diseases in the modern era. 7 Although 58 

thousands of plant species have been tested for antimicrobial properties, only a small fraction of the 59 

estimated plant species has been investigated in their phytochemical composition,8 and, so the 60 

majority of them has not been adequately evaluated. Moreover, the fractions of plant submitted to 61 

biological or pharmacological screening are even smaller.9,10 62 

 The phytochemical diversity of higher plants has been previously reviewed by examining 63 

their involvement in constitutive11 and inducible chemical defenses,12 mechanisms of plant resistance 64 

to biotic,13 as well to abiotic stresses,4 and fitness cost.14 The potential exploitation of such molecules 65 

plant antimicrobial compounds has also been evaluated and thousands of diverse natural products, 66 

involved in plant defense, have been identified including terpenoids, saponins, phenolics, 67 

phenylpropanoids, pterocarpans, stilbenes, alkaloids, glucosinolates, tiosulfinates and indoles.1  68 

Indeed, higher plants had enormous potential as sources for antimicrobial drugs with reference 69 

to antibacterial and antifungal agents. However, the majority of previous studies have focused on a 70 

single or few species, studying separately different plant parts (e.g. leaves, roots, flowers, seeds etc.) 71 

However, no attempts targeted simultaneously several species and plant tissues to provide a 72 

comprehensive description of plants metabolomics. Here, to overcome the limitations of previous 73 

studies, we selected eight plant species from the Mediterranean biome (i.e. Acanthus mollis L., 74 

Dittrichia viscosa (L.) Greuter syn. Inula viscosa (L.) Aiton. Fagus sylvatica L., Festuca drymeja 75 
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Mert. et W. D. J. Koch, Fraxinus ornus L., Hedera helix L., Quercus ilex L. and Typha latifolia L.) 76 

having different plant traits and being widely used as folk plants.15 We analyzed both leaf and root 77 

organs using functionally complementary and powerful organic chemistry methods like Gas 78 

Chromatography (GC-MS) and Nuclear Magnetic Resonance (NMR) Spectroscopy. Moreover, we 79 

used a multivariate data analysis approach to manage the large amount of data produced by GC-MS 80 

and NMR.  81 

The main objectives of our study were: 82 

(i) to describe the phytochemical composition and diversity of the eight plants;  83 

(ii) to compare the leaf and root chemistry of selected Mediterranean plants. 84 

 85 

Experimental 86 

 87 

Plant materials 88 

Eight Mediterranean plants were chosen for a metabolomic analysis through NMR and GC-MS 89 

approaches. Leaves and roots of A. mollis, D. viscosa, F. drymeja, F. ornus, F. sylvatica, H. helix, Q. 90 

ilex, and T. latifolia were collected in Cicerale (40°19′ N, 15°07′ E), an Italian municipality belonging 91 

to the “Parco Nazionale del Cilento, Vallo di Diano e Alburni”, at an altitude of 250 m a.s.l.. The 92 

study site has a typical Mediterranean climate with a mean annual temperature of 16.9 °C and 1,328 93 

mm of annual rainfall well distributed in winter, spring and fall, but with a pronounced dry summer.   94 

  95 

Solvent and chemicals 96 

n-Hexane and methanol were obtained from Delchimica Scientific Laboratories (Naples, Italy). 97 

Deuterium oxide (99,8 atom %D) was acquired from ARMAR Chemicals (Switzerland) and 98 

chloroform-d (99,8 atom %D) and HCl- methanol solution 1.25 M were obtained from Sigma-Aldrich 99 
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(Steinheim, Germany). Dimethyl-4-silapentane sodium sulfonate (DSS) (Merck, Darmstadt, 100 

Germany). 101 

 102 

Extraction procedure 103 

Leaves and roots of eight selected Mediterranean plants, collected in triplicates, were dried under 104 

controlled temperature and powdered finely with a pestle and mortar. Four grams of each sample 105 

were extracted with 20 mL of n-hexane under stirring for 1 h. Then, the apolar extract was filtered, 106 

evaporated, and stored at 4 °C until analysis. 107 

The plant material was further extracted with 20 mL MeOH/H2O (6:4) solution under stirring 108 

for 1 h, followed by centrifugation at 3000 rpm for five minutes at 25 °C. After separation, the polar 109 

extract was collected, dried by a rotary evaporator, and stored in a refrigerator at 4 °C until analysis. 110 

The following amounts of apolar extracts were obtained: A. mollis  (33.7mg for leaves, 1.4 mg for 111 

roots), D. viscosa (39.6 mg for leaves, 5.9 mg for roots), F.drymeja (9.4 mg for leaves, 1.8 mg for 112 

roots), F. ornus (32.4 mg for leaves, 2.8 mg for roots), F.sylvatica (6.2 mg for leaves, 1.5 mg for 113 

roots), H. helix (5.2 mg for leaves, 19.8 mg for roots), Q. ilex (6.7mg for leaves, 18.3 mg for roots), 114 

T. latyfolia (5.4 mg for leaves, 1.7 mg for roots). The following amounts of polar extracts were 115 

obtained: A. mollis (255.0 mg for leaves, 58.5 mg for roots), D. viscosa (468.0 mg for leaves, 285.7 116 

mg for roots), F.drymeja (41.6 mg for leaves, 38.4 mg for roots), F. ornus (348.7mg for leaves, 95.4 117 

mg for roots), F.sylvatica (20.1 mg for leaves, 60.0 mg for roots), H. helix (278.5 mg for leaves, 118 

151.7 mg for roots), Q. ilex (165.4 mg for leaves, 340.0 mg for roots), T. latyfolia (150.0 mg for 119 

leaves, 54.5 mg for roots). 120 

All samples were analyzed in triplicate to ensure their reproducibility. Apolar extracts was 121 

analyzed by GC-MS, while polar extracts was analyzed by 1H-NMR. 122 

 123 

NMR Experiment 124 

An aliquot (10 mg) of each dried polar sample was solubilized in 600 µl of deuterium oxide (99.9% 125 

D2O) and transferred into a 5 mm NMR tube. Dimethyl-4-silapentane sodium sulfonate (DSS) 126 
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(Merck, Darmstadt, Germany), added at a concentration of 0.2 mg/mL, was used as an internal 127 

standard. The NMR spectra were recorded at 298 K on a Varian Unity Inova spectrometer operating 128 

at 500 MHz. The 1H-NMR experiments were performed with 128 transients and 16K complex data 129 

point. The recycle time was set to 5 s, and a 45° pulse angle was used. Chemical shifts were referred 130 

to DSS signal ( 0.00 ppm). All spectra were processed using iNMR program (www.inmr.net), phased 131 

and baseline corrected. In total, 48 spectra (16 plant population × 3 replicates) were acquired. 132 

Quantification was performed by signal integration relative to the internal standard, DSS. The region 133 

of the solvent peaks was excluded from the analysis. Spectral peak assignments of the detected 134 

compounds were obtained based on pure standards purchased by Sigma-Aldrich, and on combined 135 

comparison with data reported in the literature and in Human Metabolome Database (HMDB).16,17 136 

All spectra were manually phased, and baseline corrected. 137 

 138 

Gas chromatography–mass spectrometry 139 

Apolar extracts were derivatized as methyl esters before analysis by GC-MS. For this purpose, an 140 

aliquot of each apolar extract (0.5 mg) was transferred into a vial and dissolved in 1 ml of a solution 141 

of MeOH: HCl 1.25 N. The vials were vortexed and left at 50 °C overnight, then they were neutralized 142 

with NaOH 1N, dried under nitrogen, solubilized in n-hexane and analyzed by GC-MS. 143 

Chromatographic conditions are those described by de Falco et al.18,19  One µl of derivatized samples 144 

were injected in a pulsed splitless mode into an Agilent-7820A GC system with 5977E MSD 145 

operating in EI mode at 70 eV. The system was equipped with a 30 m × 0.25 mm id fused-silica 146 

capillary column with 0.25 µm HP-5MS stationary phase (Agilent Technologies, UK). The injection 147 

temperature was set at 270 °C. Helium was used as carrier gas at a constant flow rate of 1 ml/min. 148 

Separation of the nonpolar extract was achieved using a temperature program of 80 °C for 1 min, then 149 

ramped at 10 °C/min to 320 °C and held for 1 min. Both chromatograms and mass spectra were 150 

evaluated using the MassHunter Qualitative Analysis B.07.00 (Agilent Technologies, CA, USA). 151 

Mass spectra of all detected compounds were compared with standard compounds and with spectra 152 
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in National Institute of Standard and Technologies library NIST MS search 2.2. Data was processed 153 

with the AMDIS (Agilent Technologies, CA, USA) software to deconvolute co-eluting peaks. 154 

Compounds were selected from the NIST list on the basis of the probability of identification ( > 90%) 155 

and by comparison with literature data. The relative amounts of separated metabolites were calculated 156 

from Total Ion Chromatography (TIC) by the computerized integrator. 157 

 158 

Multivariate data analysis 159 

Resulting dataset from 1H-NMR and GC-MS analysis was examined through Multivariate approach 160 

in order to obtain information of its underlying structure and the effect of multiple variable on the 161 

chemical differentiations between the plant species and plant tissues object of the study. Previous to 162 

apply multivariate approach each dataset was normalized. Particularly for NMR analysis, data were 163 

normalized to total area to minimize small differences and subsequently mean‐centered. In detail, for 164 

GC-MS analytical method data list of compounds was aligned according by time of retention time 165 

between samples. Aligned data was utilized to build a double entry data matrix, with plant species 166 

and portion as cases in column and identified GC-MS observed metabolite as variable in row. When 167 

metabolite was not detected for a plant species or portion, 0 value was assigned. 168 

For 1H-NMR, the description of statistical analyses refers to range scaled data, in order to 169 

preserve experimental biological information. Total dataset was plotted according to PCA, in order 170 

to explain main chemical species producing differentiations among plant and root extracts. Given the 171 

high number of resonance regions and the unbalanced presence of chemical classes that are 172 

constitutively more produced with respect to other, we perform three additional PCA on different 173 

resonance regions. Resonance regions were clustered according to common chemical classes as 174 

described following: i) Aromatic/ phenolic compounds regions (from δ 10.5 to 5.5); ii) Carbohydrates 175 

regions (from δ 5.5 to 3.0) iii) Aliphatic regions (from δ 3.0 to 0.5).  176 

Data ordination and normalization was performed by means of Excel software, while 177 

Multivariate analysis and plotting was performed in Statistica 10 software (StatSoft, Inc., Tulsa, OK). 178 
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 179 

Results and discussion 180 

 181 

Metabolite profiling of polar extracts  182 

An integrate spectroscopic approach combined with multivariate data analysis was applied on eight 183 

Mediterranean plants. The metabolic profile of leaves and roots was obtained to comprehensively 184 

evaluate the metabolome of each species and how its chemical composition was distributed in two 185 

compartments of each plant species. On the basis of our previous experience,16, 17 the polar extracts 186 

were analyzed by NMR analysis, while the apolar extracts were investigated through GC-MS, 187 

because of the strong overlapping of the methylene signals in the 1H-NMR spectra. 188 

Each polar extract showed a very intricate profile, with free aliphatic and aromatic amino acids, 189 

carbohydrates, organic acids and aromatic compounds; the qualitative and quantitative metabolite 190 

profile was peculiar of each analyzed species (Figure 1).  191 

For more convenient data interpretation, the 1H-NMR spectra were divided in three regions: 192 

the aliphatic region between 0.5-3.10 ppm, the sugar region between 3.10-5.50 ppm and the aromatic 193 

region ranging from 5.50 to 8.5 ppm (Figure 2). The aliphatic region contained signal related to amino 194 

acids and organic acids. Diagnostic methyl doublets typical of isoleucine (Ile) and valine (Val), 195 

resonated at 0.91 ppm and 1.01 ppm, respectively, and the methyl triplet of leucine (Leu) at 0.95 ppm 196 

allowed their qualitative and a quantitative assignment. Moreover, doublets at δ 1.46 (J 7.0 Hz) and 197 

δ 1.32 were associated to alanine (Ala) and threonine (Thr), respectively (Table S1). The typical 198 

region of methylene groups closes to a carbonyl group in 1H-NMR spectra showed a triplet at 2.98 199 

ppm attributed to the γ-methylene protons of γ-amino butyric acid (GABA), as well as two double 200 

doublets at 2.84 and 2.94 ppm, corresponding to the diastereotopic hydrogens of asparagine (Asn). A 201 

mention is due to proline (Pro), whose recognized has been obtained by three multiplets at δ 1.99, 202 

2.06 and 2.34, and to glutamic acid (Glu) with the typical multiplet signals at δ 2.05, 2.10 and 2.36. 203 

Pro and Glu were not always present in the studied species, but when they occurred in the plant were 204 
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present at reasonable amounts, although it was not easy to distinguish between them (Table S1). All 205 

monosaccharides and alditols were quantified by integrating the signals indicated in Table S1. Finally, 206 

the aromatic region was selected from 5.51 to 8.50, excluding three multiplet signals at 7.32, 7.36 207 

and 7.40 ppm corresponding to phenylalanine (Phe), and two doublets at 6.80 and 7.12 ppm, 208 

corresponding to tyrosine (Tyr). Some aromatic signals were determined, as chlorogenic acid (CA) 209 

(Table S1). 210 

The results showed that all analyzed samples have carbohydrates as major metabolites. In 211 

detail, the analysis of the leaves indicated F. ornus and in Q. ilex to contain a rather high content of 212 

monosaccharides, due to the presence of additional alditols. In the 1H-NMR spectra of F. ornus 213 

leaves, the signals of mannitol were easily recognized by the presence of two coupled double doublets 214 

at δ 3.66 and 3.85, a double triplet at δ 3.75 and a doublet at δ 3.79. Mannitol is the major component 215 

of manna, which is produced from Fraxinus sp. especially under stress conditions.20 In our study 216 

mannitol alone represented 45.1% in weight of the total metabolome of F. ornus. The holm oak (Q. 217 

ilex) contained two metabolites deriving from the shikimic acid pathway,21 quercitol and quinic acid 218 

(QA), whose signals resonated mostly in the sugar region. This is probably the reason for the high 219 

sugar content found for this species. It has been reported that QA and quercitol are the most abundant 220 

metabolites in Q. ilex and in other species of Quercus;22,23 their production is a reaction to biotic and 221 

osmotic stress.24,25 Quantitative determination of QA and quercitol was not easy due to their nearness 222 

in the 1H-NMR spectra; to avoid any kind of overlapping, we choose to integrate the signal at δ 1.81 223 

for quercitol and the signal at δ 1.87 for QA. In this way, we were able to quantitate quercitol and QA 224 

which represented 18.9% and 13.9% of the all holm oak leaves polar extract, respectively. On the 225 

contrary, D. viscosa had the lowest amount of carbohydrates (10.4%) (Figure 3, Table S1 and S2). 226 

The organic acid total content was almost the same in all analyzed leaves (~10%) with the 227 

exception of T. latifolia, H. helix, and Q. ilex. The former contained the lowest content of organic 228 

acid (2.6%) among the analyzed leaves. The latter present the highest content, reaching respectively 229 

23.2% and 21.0%, due to the presence of QA, absent in the other analyzed plants (Figure 3, Table 230 
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S2).   Moreover, the leaves of A. mollis showed a high amount of betaine, recognizable from a singlet 231 

at 3.25 ppm (Table S1). 232 

The leaves of D. viscosa, F. sylvatica, and F. drymeja showed a high percentage of amino 233 

acids, which was partially due to the high values of glutamic acid (31.9%, 24.8% and 20.9%, 234 

respectively) (Figure 3). Aromatic compounds were particularly abundant in D. viscosa and T. 235 

latifolia leaves, followed by F. sylvatica, F. ornus and A. mollis. The lowest content of aromatic 236 

compounds was found in Q. ilex leaves (Figure 3).  237 

Concerning root tissue, the carbohydrate content of the analyzed species was generally around 238 

50% of the comprehensive metabolite content of polar extract, with some notable exceptions. A. 239 

mollis extract had 80.6% of sugar content, due to the presence of several sugar residues, from which 240 

raffinose (Raff) was predominant with 36.5% of total extract. F. ornus contained 62.7% of sugars, 241 

the most abundant being sucrose (Sucr). Moreover, particularly low is the content of amino acids and 242 

organic acids in these species. On the contrary, D. viscosa and T. latifolia had the lowest percentage 243 

of carbohydrate content and the highest percentage of aromatic compounds (Figure 3).  244 

 245 

Metabolite profiling of apolar extracts  246 

NMR spectra of the apolar extracts of each plant showed a chemical composition almost exclusively 247 

amenable to fatty acids. The overlapping of some signals, such as the methylene groups close to a 248 

carbonyl group, did not allow to distinguish and quantify all fatty acids of apolar extracts. For this 249 

reason, we used gas chromatography coupled to mass spectrometry (GC-MS) with increasing 250 

separation capability, allowing to determine the quali-quantitative profile of the studied 251 

Mediterranean plants. In this way, it was possible to identify single fatty acids on the basis of their 252 

molecular weight.  253 

The GC-MS data of the species under investigation allowed to characterize 60 metabolites, 254 

belonging to several classes of organic compounds. The count of metabolites extracted was higher in 255 

the root extracts, reaching the maximum value in F. ornus, which also contained the highest 256 
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variability of organic compounds (Figure 4). Fatty acids were ubiquitous metabolites in all analyzed 257 

samples at variable percentage, ranging from 24.5% in D. viscosa to 100% in T. latifolia. Moreover, 258 

the fatty acid profile with relative amount depend on the species analyzed with palmitic and oleic 259 

acids always present (Table S3). In particular, palmitic acid showed an elevate concentration range 260 

from a maximum value of 52.7% in A. mollis roots to a minimum value of 1.0% in T. latyfolia leaves. 261 

Similarly, cerotic acid (C26:0) has been determined in most analyzed plants at very different 262 

concentration (44.6% in A. mollis leaves, 30.1% in T. latifolia leaves and 1.9% in roots) while in 263 

others (e.g. H. helix) it was absent. Unsaturated fatty acids were determined in the roots of F. ornus 264 

and H. helix and identified as C16:1, C18:2, C18:1 and C20:1, the last found only in manna ash (Table 265 

S3).  266 

The apolar extracts of leaves contained sesquiterpenes and alkanes in addition to fatty acids. 267 

The detected heptacosane, nonacosane and henicosane alkanes were determined in F. ornus and F. 268 

sylvatica, representing 48.9% and 43.9% of total extract, and in D. viscosa, where they were less 269 

abundant (Table S3). Sesquiterpenes were almost exclusively found in D. viscosa, where they 270 

represented 59.4% of the total extract and in the roots of A. mollis and F. ornus roots, present at 271 

smaller amounts (Table S3). Triterpenes were widespread in all studied roots extracts, although holm 272 

oak leaves contained a high level of these organic compounds (57.9% of total extract).  Triterpenes 273 

in roots were present at variable concentrations and showed the highest content in A. mollis, and F. 274 

drymeja, D. viscosa, Q. ilex, and T. latifolia, the latter species containing 38.3% and 28.4% of lupan-275 

3-one and friedelan 3-one, respectively (Table S3). 276 

Finally, steroids were found in A. mollis (16.7%), F. drymeja (41.2%) and H. helix (27.3%) 277 

leaves, and F. sylvatica (14.1%) and Q. ilex roots (41.0%), where the most representative steroid was 278 

3b,5a,6b-Cholestanetriol (Table S3). 279 

 280 

Multivariate Data Analysis 281 
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Coupled with metabolic profiling, the multivariate approach ordinated plant species according to their 282 

respective metabolic characteristics. Through PCA we obtained a general view of the underling 283 

structure of the data. The principal components were displayed as a set of scores (PC), which 284 

highlights clustering or outliers, and a set of loadings (p), which emphasizes the influence of input 285 

variables on PC. The multivariate methodology was applied both for polar and apolar extracts and, 286 

particularly for data originated from NMR, was tested for the ordination of plant according to 287 

chemical characteristics present in three different regions putatively assigned to aromatic/ phenolic 288 

compounds (from δ 10.5 to 5.5), carbohydrates regions (from δ 5.5 to 3.0), and aliphatic compounds 289 

(from δ 3.0 to 0.5).  290 

In PCA performed for the totality of the regions from 1H-NMR spectra, the first 2 components 291 

explains the 71.4% of the variance among the samples (PC1 65.6 and PC2 5.8%). Results are showed 292 

in figure 4A and 4B for loadings and score plots, respectively. In a general view, we observed a 293 

marked ordination of loadings values according to the respective plant species. Inversely, metabolic 294 

profile of the plants does not discriminate among plant portion from which metabolite was extracted. 295 

The general variation among plant species was triggered by carbohydrates, while aliphatic and 296 

aromatic/phenolics regions has a decreased discriminant power. This is likely explained by the normal 297 

attitude to accumulate carbohydrates as nutrient source from photosynthetic pathways. 26Given this, 298 

carbohydrates mediate the unidirectional disposition of the samples in its correspondent area showing 299 

a generalized positive association of all the samples with carbohydrate signals. However, peculiar 300 

number of specific metabolites generate distinctive disposition among plant species. For instance, D. 301 

viscosa leaves extracts is characterized by the presence of betaine, that also appears to be responsible 302 

of the separation of A. mollis leaves extracts from the other plant extracts. So far, mannitol signals 303 

are majorly associated to the well-known manna producer species F. ornus and the quercitol to the 304 

oak Q. ilex. In both the cases, the metabolite disposition appears to be few distinctive by the point of 305 

view of the plant organs in which the metabolite was extracted. More generally, H. helix, F. ornus, 306 

F. drymeja, F. sylvatica, D. viscosa for roots and F. ornus, F. drymeja, F. sylvatica for leaves 307 
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associate with the aforementioned mannitol and glutamic acid, sucrose, fructose, shikimic acid and 308 

raffinose.   309 

To avoid the hiding action of carbohydrates on the other spectral regions we analyzed these 310 

in separate way with the same multivariate approach. Figure 6A and 6C showed the PCA ordination 311 

of different extracts according to their chemical composition. The PCA explained totally the 62.0% 312 

of the variance in the sample (PC1 51.7% and PC2 10.3%). In this case, we observed a marked 313 

differentiation of A. mollis and H. helix root and leaf extracts with respect to other species mainly 314 

operated by the higher content of fumaric acid. Intermediate position is instead acquired by F. 315 

drymeja leaves extract associated by higher content of tyrosine. The other species aggregates in same 316 

directional ordination that is given by the similarity of the spectral regions between 6.96 and 6.83 317 

ppm. For those regions, we unassigned the signals given the high level of uncertainty. In addition, 318 

residuals signals from carbohydrates and amino acidic compounds interfere in the interpretation of 319 

the spectra limiting our multivariate approach. For the PCA of carbohydrate region (Figure 6C and 320 

6D), is observed a specular disposition of the data to those of the comprehensive PCA (Figure 5A 321 

and 5C). Indeed, the PCA of carbohydrate region explain 72.6% of the variance with respect to the 322 

71.4% explained by the PCA of the overall dataset. For the PCA of the aliphatic region, lower level 323 

of explained variance was reported (Figure 6E and 6F). Nonetheless, A. mollis and Q. ilex leaves and 324 

D. viscosa roots differentiate for quinic acid and proline contents rather than other species that 325 

differentiate for the contents of threonine and signals of rhamnose, acetic acid/GABA and residual 326 

signals from polar portion of fatty acids.  327 

PCA from polar extract showed lower level of explained variance (Total of PC 46.6%, Figure 328 

5C and 5D). However, we observed a clearer segregation of root extract with respect leaves extracts, 329 

that make only exception for F. ornus and Q. ilex leaves. Interestingly, Q. ilex root extracts dispose 330 

with leaves extract of other species in complete opposite way respect the general behaviors in the 331 

samples. So far, root chemical differentiation from apolar extracts is given by the presence of palmitic 332 

acid, 2,6,6,9,2’,6’,6’,9’-Octamethyl-[8,8’]bi[tricyclo[5.4.0.0(2,9)]undecyl], linoleic acid and behenic 333 
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acids. Oppositely, leaves are higher in contents of cerotic acid, montanic acid, eptacosane, lignoceric 334 

acid, cholestane and arachidic acid. 335 

 336 

Conclusions 337 

The large number of biological questions on plant metabolism requires that answers should be sought 338 

using the most versatile techniques available. Our goal was the development of a method capable to 339 

detect most classes of organic compounds.27 Unfortunately, the huge variety of chemical compounds 340 

found in plants did not allow the use of a single technique to this aim. 341 

The approach we developed to evaluate the chemical composition of eight Mediterranean plant 342 

species was based on spectroscopic techniques and multivariate data analysis. It was appropriate for 343 

a fast and comprehensive analysis of primary and secondary metabolites, allowing the determination 344 

of a metabolomic fingerprint of each species and the evaluation of the different distribution of the 345 

metabolites in two parts (leaves and roots) of the plant. 346 

Q. ilex and F. ornus contained large amounts of specific metabolites, quinic acid, quercitol and 347 

mannitol, usually produced from plants during stress conditions. Besides being involved in osmotic 348 

stress, quercitol has been recently used as a building block in the synthetic strategy for antidiabetic 349 

compounds. 28 D. viscosa was characterized by a high content of aromatic compounds at the expense 350 

of carbohydrate production in the polar fraction, and a considerable content of sesquiterpenes in the 351 

apolar fraction. The separation of A. mollis from the other species was due to the presence of betaine 352 

and sucrose in leaves and raffinose in roots. 353 

Moreover, fatty acids were present in all the analyzed species, especially in T. latifolia leaves and in 354 

A. mollis and F. drymeja roots. Fatty acids were almost exclusively present as saturated fatty acids. 355 

In conclusion, the approach we developed proved to be suitable for a rapid investigation of different 356 

plant species containing a wild range of organic molecules. 357 

 358 

 359 
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FIGURE CAPTIONS 367 

 368 

Figure 1. 1H-NMR at 500 MHz in D2O of leaves (L) and roots (R) of Mediterranean species.  369 

 370 

Figure 2. 1H-NMR spectra at 500 MHz in D2O of A. mollis and Q. ilex leaves (L) and roots (R). 371 

 372 

Figure 3. Heat-map of the relative concentration (%) of metabolites in leave and root polar extract of 373 

each species. 374 

 375 

Figure 4. a) Total count of organic compounds in apolar leaf (left) and root (right) extracts, and; b) 376 

relative concentration (%) for class of organic compounds in apolar leaf (left) and root (right) extracts. 377 

 378 

Figure 5. Principal component analysis (PCA) ordination of eight Mediterranean plant leaves and 379 

roots based on 1H-NMR resonance spectra from polar (A and B) and apolar (B and C) fractions. A 380 

and C: variable loadings; B and D: factorial scores of resonance intervals of 0.01 ppm and retention 381 

time value. Explained variance of principal components is reported on the axis labels. Plants in 382 

loading plots are numbered as: 1. A. mollis, 2. D. viscosa, 3. F. drimejia, 4. F. ornus, 5. F. sylvatica, 383 

6. H. helix,7. Q. ilex, 8. T. latifolia. 384 

 385 

Figure 6. Principal component analysis (PCA) ordination of 1H-NMR resonance intervals: (A and B) 386 

from δ 10.5 to 5.5; (C and D) from δ 5.5 to 3.0; (E and F) from δ 3.0 to 0.5. Left: variable loadings; 387 

right: factorial scores of resonance intervals of 0.01 ppm. Explained variance of principal components 388 

is reported on the axis labels. Plants in loading plots are numbered as: 1. A. mollis, 2. D. viscosa, 3. 389 

F. drimejia, 4. F. ornus, 5. F. sylvatica, 6. H. helix, 7. Q. ilex, 8. T. latifolia. 390 
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Figure 2. 1H-NMR spectra at 500 MHz in D2O of A. mollis and Q. ilex leaves (L) and roots (R).  396 
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Figure 3. Heat-map of the relative concentration (%) of metabolites in leave and root polar extract of 399 

each species. 400 
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Figure 4. a) Total count of organic compounds in apolar leaf (left) and root (right) extracts; b) Relative 404 

concentration (%) for class of organic compounds in apolar leaf (left) and root (right) extracts 405 
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