1,520 research outputs found

    Revisiting the B {\to} {\pi} {\rho}, {\pi} {\omega} Decays in the Perturbative QCD Approach Beyond the Leading Order

    Full text link
    We calculate the branching ratios and CP asymmetries of the BπρB \to \pi \rho, πω\pi\omega decays in the perturbative QCD factorization approach up to the next-to-leading-order contributions. We find that the next-to-leading-order contributions can interfere with the leading-order part constructively or destructively for different decay modes. Our numerical results have a much better agreement with current available data than previous leading-order calculations, e.g., the next-to-leading-order corrections enhance the B0π0ρ0B^0\rightarrow \pi^0\rho^0 branching ratios by a factor 2.5, which is helpful to narrow the gaps between theoretic predictions and experimental data. We also update the direct CP-violation parameters, the mixing-induced CP-violation parameters of these modes, which show a better agreement with experimental data than many of the other approaches.Comment: 23 pages, 4 figures, 4 table

    Robust Eye Gaze Estimation

    Get PDF
    Eye gaze detection under challenging lighting conditions is a non-trivial task. Pixel intensity and the shades around the eye region may change depending on the time of day, location, or due to artificial lighting. This paper introduces a lighting-adaptive solution for robust eye gaze detection. First, we propose a binarization and cropping technique to limit our region of interest. Then we develop a gradient-based method for eye-pupil detection; and finally, we introduce an adaptive eye-corner detection technique that altogether lead to robust eye gaze estimation. Experimental results show the outperformance of the proposed method compared with related techniques

    Photoemission Spectroscopy from Inhomogeneous Models of Cuprates

    Full text link
    We investigate the electronic dynamics in the underdoped cuprates focusing on the effects of one-dimensional charge stripes. We address recent experimental Angular-Resolved Photoemission Spectra results on (La1.28_{1.28}Nd0.6_{0.6}Sr0.12_{0.12})CuO4_4. We find that various inhomogeneous models can account for the distribution of quasiparticle weights close to momentum k=(π,0){\bf k}=(\pi,0) and symmetry related points. The observed flat dispersion region around the same k{\bf k} point can only be addressed by certain classes of those inhomogeneous models which locally break spin symmetry. Homogeneous models including hopping elements up to second neighbors cannot reproduce the experimental quasiparticle weight, since most of it is centered around k=(π2,π2){\bf k}=(\frac {\pi}{2},\frac {\pi} {2}).Comment: 5 pages, color figure

    Heat Conduction and Magnetic Phase Behavior in Electron-Doped Ca_{1-x} La_x MnO_3(0 <= x <= 0.2)

    Full text link
    Measurements of thermal conductivity (kappa) vs temperature are reported for a series of Ca_{1-x} La_x MnO_3(0 <= x <= 0.2) specimens. For the undoped (x=0), G-type antiferromagnetic compound a large enhancement of kappa below the Neel temperature (T_N ~ 125 K) indicates a strong coupling of heat-carrying phonons to the spin system. This enhancement exhibits a nonmonotonic behavior with increasing x and correlates remarkably well with the small ferromagnetic component of the magnetization reported previously [Neumeier and Cohn, Phys. Rev. B 61 14319 (2000).] Magnetoelastic polaron formation appears to underly the behavior of kappa and the magnetization at x <= 0.02.Comment: submitted to PRB; 4 pp., 4 Fig.'s, RevTex

    Association of delays in surgery for melanoma with insurance type

    Get PDF
    IMPORTANCE: Timely receipt of treatment for cancer is an important aspect of health care quality. It is unknown how delays of surgery for melanoma vary by insurance type. OBJECTIVE: To analyze factors associated with delays between diagnosis and surgery for melanoma in patients with Medicare, Medicaid, or private insurance. DESIGN, SETTING, AND PARTICIPANTS: Retrospective cohort study of patients who received a diagnosis of melanoma between 2004 and 2011 in North Carolina using data from the North Carolina Cancer Registry linked to administrative claims from Medicare, Medicaid, and private insurance. Inclusion criteria were incident patients with a diagnosis of melanoma stage 0 to III and with continuous insurance enrollment from at least 1 month prior to the month of diagnosis to 12 months after diagnosis of melanoma. MAIN OUTCOMES AND MEASURES: Surgical delay, defined as definitive surgical excision occurring more than 6 weeks after melanoma diagnosis. Generalized linear models with log link, Poisson distributions, and robust standard errors were used to estimate adjusted risk ratios (RRs) to model risk of delay in definitive surgery. RESULTS: A total of 7629 patients were included (4210 [55%] female; mean [SD] age, 64 [15] years), 48% (n = 3631) Medicare, 48% (n = 3667) privately insured, and 4% (n = 331) Medicaid patients. Privately insured patients were least likely to experience a delay in definitive surgery, followed by Medicare and Medicaid patients (519 [14%], 609 [17%], and 79 [24%], respectively; P < .001). After demographic adjustment, the risk of surgical delay was significantly increased in patients with Medicaid compared with private insurance (RR, 1.36; 95% CI, 1.09-1.70). Delays were more likely in nonwhite patients (RR, 1.38; 95% CI, 1.02-1.87). Surgical delays were less likely if the physician performing the surgery (RR, 0.82; 95% CI, 0.72-0.93) or the diagnosing clinician (RR, 0.81; 95% CI, 0.71-0.93) was a dermatologist as compared with a nondermatologist. CONCLUSION AND RELEVANCE: Surgical treatment delays were common but were less prevalent in patients diagnosed or surgically treated by a dermatologist. Medicaid patients experienced the most surgical delays. A reduction in delays in melanoma surgery could be achieved through better access to specialty care and cross-disciplinary coordination

    Twist-3 Distribute Amplitude of the Pion in QCD Sum Rules

    Full text link
    We apply the background field method to calculate the moments of the pion two-particles twist-3 distribution amplitude (DA) ϕp(ξ)\phi_p(\xi) in QCD sum rules. In this paper,we do not use the equation of motion for the quarks inside the pion since they are not on shell and introduce a new parameter m0pm_0^p to be determined. We get the parameter m0p1.30GeVm_0^p\approx1.30GeV in this approach. If assuming the expansion of ϕp(ξ)\phi_p(\xi) in the series in Gegenbauer polynomials Cn1/2(ξ)C_n^{1/2}(\xi), one can obtain its approximate expression which can be determined by its first few moments.Comment: 12 pages, 3 figure

    On the estimation of the curvatures and bending rigidity of membrane networks via a local maximum-entropy approach

    Full text link
    We present a meshfree method for the curvature estimation of membrane networks based on the Local Maximum Entropy approach recently presented in (Arroyo and Ortiz, 2006). A continuum regularization of the network is carried out by balancing the maximization of the information entropy corresponding to the nodal data, with the minimization of the total width of the shape functions. The accuracy and convergence properties of the given curvature prediction procedure are assessed through numerical applications to benchmark problems, which include coarse grained molecular dynamics simulations of the fluctuations of red blood cell membranes (Marcelli et al., 2005; Hale et al., 2009). We also provide an energetic discrete-to-continuum approach to the prediction of the zero-temperature bending rigidity of membrane networks, which is based on the integration of the local curvature estimates. The Local Maximum Entropy approach is easily applicable to the continuum regularization of fluctuating membranes, and the prediction of membrane and bending elasticities of molecular dynamics models

    Self- generated disorder and structural glass formation in homopolymer globules

    Full text link
    We have investigated the interrelation between the spin glasses and the structural glasses. Spin glasses in this case are random magnets without reflection symmetry (e.g. pp - spin interaction spin glasses and Potts glasses) which contain quenched disorder, whereas the structural glasses are here exemplified by the homopolymeric globule, which can be viewed as a liquid of connected molecules on nano scales. It is argued that the homopolymeric globule problem can be mapped onto a disorder field theoretical model whose effective Hamiltonian resembles the corresponding one for the spin glass model. In this sense the disorder in the globule is self - generated (in contrast to spin glasses) and can be related with competitive interactions (virial coefficients of different signs) and the chain connectivity. The work is aimed at giving a quantitative description of this analogy. We have investigated the phase diagram of the homopolymeric globule where the transition line from the liquid to glassy globule is treated in terms of the replica symmetry breaking paradigm. The configurational entropy temperature dependence is also discussed.Comment: 22 pages, 4 figures, submitted to Phys. Rev.

    Small-polaron hopping conductivity in bilayer manganite La1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7}

    Full text link
    We report anisotropic resistivity measurements on a La1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7} single crystal over a temperature TT range from 2 to 400 K and in magnetic fields HH up to 14 T. For T218T\geq 218 K, the temperature dependence of the zero-field in-plane ρab(T)\rho_{ab}(T) resistivity obeys the adiabatic small polaron hopping mechanism, while the out-of-plane ρc(T)\rho_{c}(T) resistivity can be ascribed by an Arrhenius law with the same activation energy. Considering the magnetic character of the polarons and the close correlation between the resistivity and magnetization, we developed a model which allows the determination of ρab,c(H,T)\rho_{ab,c}(H,T). The excellent agreement of the calculations with the measurements indicates that small polarons play an essential role in the electrical transport properties in the paramagnetic phase of bilayer manganites.Comment: 4 pages, 3 figures, to appear in Physical Review
    corecore