277 research outputs found

    Instability and Periodic Deformation in Bilayer Membranes Induced by Freezing

    Full text link
    The instability and periodic deformation of bilayer membranes during freezing processes are studied as a function of the difference of the shape energy between the high and the low temperature membrane states. It is shown that there exists a threshold stability condition, bellow which a planar configuration will be deformed. Among the deformed shapes, the periodic curved square textures are shown being one kind of the solutions of the associated shape equation. In consistency with recent expe rimental observations, the optimal ratio of period and amplitude for such a texture is found to be approximately equal to (2)^{1/2}\pi.Comment: 8 pages in Latex form, 1 Postscript figure. To be appear in Mod. Phys. Lett. B. 199

    Disability Dimensions: Course, Risk and Mortality Salience Predict Workplace Bias

    Get PDF
    The current study explored the course, risk and mortality salience of a specific disability (N=242). Four job candidates were presented with varying forms of that disability; yet the results indicated ratings of work-related variables changed depending upon perceived dimensions (course and risk) of the candidates’ disability. Furthermore, findings demonstrated a difference in perceived trainability and absenteeism when mortality was made salient. Implications reveal the potential importance of using a dimensional approach to studying individuals with a disability and relevant consequences for organizations when the course, risk or mortality of the disability is made salient

    Gravity-Induced Shape Transformations of Vesicles

    Full text link
    We theoretically study the behavior of vesicles filled with a liquid of higher density than the surrounding medium, a technique frequently used in experiments. In the presence of gravity, these vesicles sink to the bottom of the container, and eventually adhere even on non - attractive substrates. The strong size-dependence of the gravitational energy makes large parts of the phase diagram accessible to experiments even for small density differences. For relatively large volume, non-axisymmetric bound shapes are explicitly calculated and shown to be stable. Osmotic deflation of such a vesicle leads back to axisymmetric shapes, and, finally, to a collapsed state of the vesicle.Comment: 11 pages, RevTeX, 3 Postscript figures uuencode

    Diffusion of a Deformable Body in a random Flow

    Full text link
    We consider a deformable body immersed in an incompressible liquid that is randomly stirred. Sticking to physical situations in which the body departs only slightly from its spherical shape, we calculate the diffusion constant of the body. We give explicitly the dependence of the diffusion constant on the velocity correlations in the liquid and on the size of the body. We emphasize the particular case in which the random velocity field follows from thermal agitation.Comment: 9 pages, 2 figures, late

    Willmore minimizers with prescribed isoperimetric ratio

    Full text link
    Motivated by a simple model for elastic cell membranes, we minimize the Willmore functional among two-dimensional spheres embedded in R^3 with prescribed isoperimetric ratio

    Parameterization invariance and shape equations of elastic axisymmetric vesicles

    Full text link
    The issue of different parameterizations of the axisymmetric vesicle shape addressed by Hu Jian-Guo and Ou-Yang Zhong-Can [ Phys.Rev. E {\bf 47} (1993) 461 ] is reassesed, especially as it transpires through the corresponding Euler - Lagrange equations of the associated elastic energy functional. It is argued that for regular, smooth contours of vesicles with spherical topology, different parameterizations of the surface are equivalent and that the corresponding Euler - Lagrange equations are in essence the same. If, however, one allows for discontinuous (higher) derivatives of the contour line at the pole, the differently parameterized Euler - Lagrange equations cease to be equivalent and describe different physical problems. It nevertheless appears to be true that the elastic energy corresponding to smooth contours remains a global minimum.Comment: 10 pages, latex, one figure include

    Spheres and Prolate and Oblate Ellipsoids from an Analytical Solution of Spontaneous Curvature Fluid Membrane Model

    Full text link
    An analytic solution for Helfrich spontaneous curvature membrane model (H. Naito, M.Okuda and Ou-Yang Zhong-Can, Phys. Rev. E {\bf 48}, 2304 (1993); {\bf 54}, 2816 (1996)), which has a conspicuous feature of representing the circular biconcave shape, is studied. Results show that the solution in fact describes a family of shapes, which can be classified as: i) the flat plane (trivial case), ii) the sphere, iii) the prolate ellipsoid, iv) the capped cylinder, v) the oblate ellipsoid, vi) the circular biconcave shape, vii) the self-intersecting inverted circular biconcave shape, and viii) the self-intersecting nodoidlike cylinder. Among the closed shapes (ii)-(vii), a circular biconcave shape is the one with the minimum of local curvature energy.Comment: 11 pages, 11 figures. Phys. Rev. E (to appear in Sept. 1999

    Numerical observation of non-axisymmetric vesicles in fluid membranes

    Full text link
    By means of Surface Evolver (Exp. Math,1,141 1992), a software package of brute-force energy minimization over a triangulated surface developed by the geometry center of University of Minnesota, we have numerically searched the non-axisymmetric shapes under the Helfrich spontaneous curvature (SC) energy model. We show for the first time there are abundant mechanically stable non-axisymmetric vesicles in SC model, including regular ones with intrinsic geometric symmetry and complex irregular ones. We report in this paper several interesting shapes including a corniculate shape with six corns, a quadri-concave shape, a shape resembling sickle cells, and a shape resembling acanthocytes. As far as we know, these shapes have not been theoretically obtained by any curvature model before. In addition, the role of the spontaneous curvature in the formation of irregular crenated vesicles has been studied. The results shows a positive spontaneous curvature may be a necessary condition to keep an irregular crenated shape being mechanically stable.Comment: RevTex, 14 pages. A hard copy of 8 figures is available on reques

    Hamilton's equations for a fluid membrane: axial symmetry

    Full text link
    Consider a homogenous fluid membrane, or vesicle, described by the Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is axially symmetric, this energy can be viewed as an `action' describing the motion of a particle; the contours of equilibrium geometries are identified with particle trajectories. A novel Hamiltonian formulation of the problem is presented which exhibits the following two features: {\it (i)} the second derivatives appearing in the action through the mean curvature are accommodated in a natural phase space; {\it (ii)} the intrinsic freedom associated with the choice of evolution parameter along the contour is preserved. As a result, the phase space involves momenta conjugate not only to the particle position but also to its velocity, and there are constraints on the phase space variables. This formulation provides the groundwork for a field theoretical generalization to arbitrary configurations, with the particle replaced by a loop in space.Comment: 11 page
    • …
    corecore