320 research outputs found

    Cohesive model approach to the nucleation and propagation of cracks due to a thermal shock

    No full text
    International audienceThis paper studies the initiation of cohesive cracks in the thermal shock problem through a variational analysis. A two-dimensional semi-infinite slab with an imposed temperature drop on its free surface is considered. Assuming that cracks are periodically distributed and orthogonal to the surface, at short times we show that the optimum is a distribution of infinitely close cohesive cracks. This leads us to introduce a homogenized effective behavior which reveals to be stable for small times, thanks to the irreversibility. At a given loading cracks with a non-cohesive part nucleate. We characterize the periodic array of these macro-cracks between which the micro-cracks remain. Finally, for longer times, the cohesive behavior converges towards that from Griffith's evolution law. Numerical investigations complete and quantify the analytical results

    Smooth, second order, non-negative meshfree approximants selected by maximum entropy

    Get PDF
    We present a family of approximation schemes, which we refer to as second-order maximum-entropy (max-ent) approximation schemes, that extends the first-order local max-ent approximation schemes to second-order consistency. This method retains the fundamental properties of first-order max-ent schemes, namely the shape functions are smooth, non-negative, and satisfy a weak Kronecker-delta property at the boundary. This last property makes the imposition of essential boundary conditions in the numerical solution of partial differential equations trivial. The evaluation of the shape functions is not explicit, but it is very efficient and robust. To our knowledge, the proposed method is the first higher-order scheme for function approximation from unstructured data in arbitrary dimensions with non-negative shape functions. As a consequence, the approximants exhibit variation diminishing properties, as well as an excellent behavior in structural vibrations problems as compared with the Lagrange finite elements, MLS-based meshfree methods and even B-Spline approximations, as shown through numerical experiments. When compared with usual MLS-based second-order meshfree methods, the shape functions presented here are much easier to integrate in a Galerkin approach, as illustrated by the standard benchmark problems

    On the construction of an efficient finite-element solver for phase-field simulations of many-particle solid-state-sintering processes

    Get PDF
    We present an efficient solver for the simulation of many-particle solid-state-sintering processes. The microstructure evolution is described by a system of equations consisting of one Cahn–Hilliard equation and a set of Allen-Cahn equations to distinguish neighboring particles. The particle packing is discretized in space via multicomponent linear adaptive finite elements and implicitly in time with variable time-step sizes, resulting in a large nonlinear system of equations with strong coupling between all components to be solved. Since on average 10k degrees of freedom per particle are necessary to accurately capture the interface dynamics in 3D, we propose strategies to solve the resulting large and challenging systems. This includes the efficient evaluation of the Jacobian matrix as well as the implementation of Jacobian-free methods by applying state-of-the-art matrix-free algorithms for high and dynamic numbers of components, advances regarding preconditioning, and a fully distributed grain-tracking algorithm. We validate the obtained results, examine in detail the node-level performance and demonstrate the scalability up to 10k particles on modern supercomputers. Such numbers of particles are sufficient to simulate the sintering process in (statistically meaningful) representative volume elements. Our framework thus forms a valuable tool for the virtual design of solid-state-sintering processes for pure metals and their alloys

    General Multi-Fidelity Framework for Training Artificial Neural Networks With Computational Models

    Get PDF
    Training of artificial neural networks (ANNs) relies on the availability of training data. If ANNs have to be trained to predict or control the behavior of complex physical systems, often not enough real-word training data are available, for example, because experiments or measurements are too expensive, time-consuming or dangerous. In this case, generating training data by way of realistic computational simulations is a viable and often the only promising alternative. Doing so can, however, be associated with a significant and often even prohibitive computational cost, which forms a serious bottleneck for the application of machine learning to complex physical systems. To overcome this problem, we propose in this paper a both systematic and general approach. It uses cheap low-fidelity computational models to start the training of the ANN and gradually switches to higher-fidelity training data as the training of the ANN progresses. We demonstrate the benefits of this strategy using examples from structural and materials mechanics. We demonstrate that in these examples the multi-fidelity strategy introduced herein can reduce the total computational cost–compared to simple brute-force training of ANNs–by a half up to one order of magnitude. This multi-fidelity strategy can thus be hoped to become a powerful and versatile tool for the future combination of computational simulations and artificial intelligence, in particular in areas such as structural and materials mechanics

    Multi-adaptive spatial discretization of bond-based peridynamics

    Get PDF
    Peridynamic (PD) models are commonly implemented by exploiting a particle-based method referred to as standard scheme. Compared to numerical methods based on classical theories (e.g., the finite element method), PD models using the meshfree standard scheme are typically computationally more expensive mainly for two reasons. First, the nonlocal nature of PD requires advanced quadrature schemes. Second, non-uniform discretizations of the standard scheme are inaccurate and thus typically avoided. Hence, very fine uniform discretizations are applied in the whole domain even in cases where a fine resolution is per se required only in a small part of it (e.g., close to discontinuities and interfaces). In the present study, a new framework is devised to enhance the computational performance of PD models substantially. It applies the standard scheme only to localized regions where discontinuities and interfaces emerge, and a less demanding quadrature scheme to the rest of the domain. Moreover, it uses a multi-grid approach with a fine grid spacing only in critical regions. Because these regions are identified dynamically over time, our framework is referred to as multi-adaptive. The performance of the proposed approach is examined by means of two real world problems, the Kalthoff-Winkler experiment and the bio-degradation of a magnesium-based bone implant screw. It is demonstrated that our novel framework can vastly reduce the computational cost (for given accuracy requirements) compared to a simple application of the standard scheme

    A homogenized constrained mixture model of cardiac growth and remodeling: Analyzing mechanobiological stability and reversal

    Full text link
    Cardiac growth and remodeling (G&R) patterns change ventricular size, shape, and function both globally and locally. Biomechanical, neurohormonal, and genetic stimuli drive these patterns through changes in myocyte dimension and fibrosis. We propose a novel microstructure-motivated model that predicts organ-scale G&R in the heart based on the homogenized constrained mixture theory. Previous models, based on the kinematic growth theory, reproduced consequences of G&R in bulk myocardial tissue by prescribing the direction and extent of growth but neglected underlying cellular mechanisms. In our model, the direction and extent of G&R emerge naturally from intra- and extra cellular turnover processes in myocardial tissue constituents and their preferred homeostatic stretch state. We additionally propose a method to obtain a mechanobiologically equilibrated reference configuration. We test our model on an idealized 3D left ventricular geometry and demonstrate that our model aims to maintain tensional homeostasis in hypertension conditions. In a stability map, we identify regions of stable and unstable G&R from an identical parameter set with varying systolic pressures and growth factors. Furthermore, we show the extent of G&R reversal after returning the systolic pressure to baseline following stage 1 and 2 hypertension. A realistic model of organ-scale cardiac G&R has the potential to identify patients at risk of heart failure, enable personalized cardiac therapies, and facilitate the optimal design of medical devices
    • …
    corecore