22 research outputs found

    Natural enemies of armored scales (Hemiptera: Diaspididae) and soft scales (Hemiptera: Coccoidae) in Chile: molecular and morphological identification.

    Get PDF
    Scale insects (Hemiptera: Sternorrhyncha: Coccomorpha) are key pests of agricultural crops and ornamental plants worldwide. Their populations are difficult to control, even with insecticides, due to their cryptic habits. Moreover, there is growing concern over the use of synthetic pesticides for their control, due to deleterious environmental effects and the emergence of resistant populations of target pests. In this context, biological control may be an effective and sustainable approach. Hymenoptera Chalcidoidea includes natural enemies of scale insects that have been successfully used in many biological control programs. However, the correct identification of pest scale species and their natural enemies is particularly challenging because these insects are very small and highly specialized. Integrative taxonomy, coupling DNA barcoding and morphological analysis, has been successfully used to characterize pests and natural enemy species. In this study, we performed a survey of parasitoids and predators of armored and soft scales in Chile, based on 28S and COI barcodes. Fifty-three populations of Diaspididae and 79 populations of Coccidae were sampled over the entire length of the country, from Arica (18˚S) to Frutillar (41˚S), between January 2015 and February 2016. The phylogenetic relationships obtained by Bayesian inference from multilocus haplotypes revealed 41 putative species of Chalcidoidea, five Coccinellidae and three Neuroptera. Species delimitation was confirmed using ABGD, GMYC and PTP model. In Chalcidoidea, 23 species were identified morphologically, resulting in new COI barcodes for 12 species and new 28S barcodes for 14 species. Two predator species (Rhyzobius lophantae and Coccidophilus transandinus) were identified morphologically, and two parasitoid species, Chartocerus niger and Signiphora bifasciata, were recorded for the first time in Chile

    Integrating adverse effect analysis into environmental risk assessment for exotic generalist arthropod biological control agents: a three-tiered framework

    Get PDF
    Environmental risk assessments (ERAs) are required before utilizing exotic arthropods for biological control (BC). Present ERAs focus on exposure analysis (host/prey range) and have resulted in approval of many specialist exotic biological control agents (BCA). In comparison to specialists, generalist arthropod BCAs (GABCAs) have been considered inherently risky and less used in classical biological control. To safely consider exotic GABCAs, an ERA must include methods for the analysis of potential effects. A panel of 47 experts from 14 countries discussed, in six online forums over 12 months, scientific criteria for an ERA for exotic GABCAs. Using four case studies, a three-tiered ERA comprising Scoping, Screening and Definitive Assessments was developed. The ERA is primarily based on expert consultation, with decision processes in each tier that lead to the approval of the petition or the subsequent tier. In the Scoping Assessment, likelihood of establishment (for augmentative BC), and potential effect(s) are qualitatively assessed. If risks are identified, the Screening Assessment is conducted, in which 19 categories of effects (adverse and beneficial) are quantified. If a risk exceeds the proposed risk threshold in any of these categories, the analysis moves to the Definitive Assessment to identify potential non-target species in the respective category(ies). When at least one potential non-target species is at significant risk, long-term and indirect ecosystem risks must be quantified with actual data or the petition for release can be dismissed or withdrawn. The proposed ERA should contribute to the development of safe pathways for the use of low risk GABCAs

    The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology

    Get PDF
    The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is native to Asia but has been intentionally introduced to many countries as a biological control agent of pest insects. In numerous countries, however, it has been introduced unintentionally. The dramatic spread of H. axyridis within many countries has been met with considerable trepidation. It is a generalist top predator, able to thrive in many habitats and across wide climatic conditions. It poses a threat to biodiversity, particularly aphidophagous insects, through competition and predation, and in many countries adverse effects have been reported on other species, particularly coccinellids. However, the patterns are not consistent around the world and seem to be affected by many factors including landscape and climate. Research on H. axyridis has provided detailed insights into invasion biology from broad patterns and processes to approaches in surveillance and monitoring. An impressive number of studies on this alien species have provided mechanistic evidence alongside models explaining large-scale patterns and processes. The involvement of citizens in monitoring this species in a number of countries around the world is inspiring and has provided data on scales that would be otherwise unachievable. Harmonia axyridis has successfully been used as a model invasive alien species and has been the inspiration for global collaborations at various scales. There is considerable scope to expand the research and associated collaborations, particularly to increase the breadth of parallel studies conducted in the native and invaded regions. Indeed a qualitative comparison of biological traits across the native and invaded range suggests that there are differences which ultimately could influence the population dynamics of this invader. Here we provide an overview of the invasion history and ecology of H. axyridis globally with consideration of future research perspectives. We reflect broadly on the contributions of such research to our understanding of invasion biology while also informing policy and people

    Dinámica Temporal de Coleópteros Asociados a Alfalfa

    No full text
    La alfalfa es un cultivo que aloja una gran diversidad de insectos. Estos pueden variar en composición y abundancia según la época del año de acuerdo a la fenología del cultivo y, además, en función del régimen de corte de la alfalfa. En este trabajo se describe la composición y la dinámica temporal del ensamble de coleópteros asociados a un cultivo de alfalfa de dos años de edad ubicado en Santiago. Una vez al mes, entre noviembre del 2001 y febrero de 2002, se muestrearon estos insectos en alfalfa segada permanentemente y en alfalfa sin segar, a través de redes entomológicas y trampas Barber. Se colectaron un total de 2166 coleópteros de 73 especies. De ellas, 36 fueron colectadas sólo en trampas Barber, 13 sólo en redes y 24 mediante ambos métodos. Sólo 15 especies se colectaron durante los cuatro meses y 29 aparecen sólo en una fecha de muestreo, lo que indica un ensamble muy dinámico. La mayor parte de las especies fueron, en alguno de sus estados de vida, depredadoras. En Barber, la mayor abundancia y riqueza de especies se obtuvo en enero y en redes la abundancia tiende a ser mayor en enero y febrero, en cambio la riqueza fue similar todos los meses. La abundancia de coleópteros varíó según la familia, siendo en Barber más abundantes Anthicidae y Tenebrionidae, y en redes, Lathridiidae y Coccinellidae. Sin embargo, la abundancia relativa de ellas respecto a las otras familias varió en el tiempo. Los coleópteros más abundantes fueron depredadores y saprófagos. En relación al régimen de corte, solamente en enero los coleópteros en alfalfa segada fueron más abundantes y tendieron a ser más diversos. Lo anterior corroboró la variabilidad de la fauna de coleópteros asociados a alfalfa en función del tiempo y del crecimiento de esta

    Yield and carcass composition of broilers fed with diets based on the concept of crude protein or ideal protein

    Get PDF
    Two experiments were conducted to evaluate the effect of diets formulated using the criteria of crude protein (CP) and ideal protein (IP) on the yield and carcass composition of male and female broilers. Birds of two broilers strains (Hybro G and Hybro PG) were reared from 1 to 42 days of age during the summer, with average temperatures of 26°C. A completely randomized experimental design was used in a 2 x 2 factorial arrangement, with 6 replicates and 20 birds per pen. On day 42, four birds from each experimental unit were killed and carcass yield and composition were determined. Breast yield was higher in males and females fed the IP-based diet than in birds fed the CP-based diet. Abdominal fat pad and carcass crude protein were statistically similar between the two protein criteria and between strains. Carcass amino acid levels evidenced higher levels of Met, Lys, Met+Cys and Thr in the males fed IP-based diets. No differences were seen between the two criteria for the females. Diets formulated according to IP resulted in better carcass and breast yield, both for males and females
    corecore