401 research outputs found
Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway
OBJECTIVE: We tested whether ischemic postconditioning (IPostC) is protective in remodeled myocardium. METHODS: Post-myocardial infarct (MI)-remodeled hearts after permanent coronary artery ligation and one kidney one clip (1K1C) hypertensive hearts of male Wistar rats were exposed to 40 min of ischemia followed by 90 min of reperfusion. IPostC was induced by six cycles of 10 s reperfusion interspersed by 10 s of no-flow ischemia. Activation of reperfusion injury salvage kinases was measured using Western blotting and in vitro kinase activity assays. RESULTS: IPostC prevented myocardial damage in both MI-remodeled and 1K1C hearts, as measured by decreased infarct size and lactate dehydrogenase release, and improved function. The reduction in infarct size and the recovery of left ventricular contractility achieved by IPostC was less in 1K1C hearts, but was unchanged in MI-remodeled hearts when compared to healthy hearts. In contrast, the recovery of inotropy was unaffected in 1K1C hearts, but was less in MI-remodeled hearts. Inhibition of the phosphatidylinositol 3-kinase (PI3K) pathway with LY294002 abolished the protective effects of IPostC on both disease models and healthy hearts. Western blot analysis in conjunction with in vitro kinase activity assays identified protein kinase B (PKB)/Akt but not p42/p44 extracellular-signal regulated kinase 1/2 (ERK1/2) as the predominant kinase in IPostC-mediated cardioprotection in remodeled hearts. IPostC increased phosphorylation of the PKB/Akt downstream targets eNOS, GSK3beta, and p70S6K in remodeled hearts. CONCLUSION: Our results offer evidence that IPostC mediates cardioprotection in the remodeled rat myocardium primarily via activation of the PI3K-PKB/Akt reperfusion injury salvage kinase pathwa
Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes
CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9- sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient biallelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo
Effects of exercise intensity on gut microbiome composition and function in people with type 2 diabetes
This is the final version. Available from Taylor and Francis Group via the DOI in this record. Exercise is positively associated with higher microbial diversity, but there is limited information on exercise intensity's effect on gut microbiome composition and function in clinical populations. This study examines whether different intensities of exercise exert differential effects on gut microbiome composition and function in low active people with type 2 diabetes. This is a sub-study of the Exercise for Type 2 Diabetes Study, a single centre, prospective, randomised controlled trial. Participants (n = 12) completed 8-weeks of combined aerobic and resistance moderate intensity continuous training (C-MICT) or combined aerobic and resistance high-intensity interval training (C-HIIT). Faecal samples were collected before and after intervention to measure gut microbiome composition and metabolic pathways (metagenome shotgun sequencing) and short-chain fatty acids. Post-exercise α-diversity was different between groups as was the relative abundance of specific taxa was (p < .05). Post-exercise relative abundance of Bifidobacterium, A. municiphila, and butyrate-producers Lachnospira eligens, Enterococcus spp., and Clostridium Cluster IV were higher at lower exercise intensity. Other butyrate-producers (from Eryspelothrichales and Oscillospirales), and methane producer Methanobrevibacter smithii were higher at higher exercise intensity. Pyruvate metabolism (ko00620),COG “Cell wall membrane envelope biogenesis” and “Unknown function” pathways were significantly different between groups and higher in C-MICT post-exercise. Differential abundance analysis on KO showed higher expression of Two-component system in C-HIIT. Transcription factors and “unknown metabolism” related pathways decreased in both groups. There were no significant between group changes in faecal short chain fatty acids. Exercise intensity had a distinct effect on gut microbiome abundance and metabolic function, without impacting short-chain fatty acid output.Biotechnology & Biological Sciences Research Council (BBSRC)Biotechnology & Biological Sciences Research Council (BBSRC)Centre for Research in Exercise and Physical Activity (The University of Queensland
Explicit solution of the quantum three-body Calogero-Sutherland model
Quantum integrable systems generalizing Calogero-Sutherland systems were
introduced by Olshanetsky and Perelomov (1977). Recently, it was proved that
for systems with trigonometric potential, the series in the product of two wave
functions is a deformation of the Clebsch-Gordan series. This yields recursion
relations for the wave functions of those systems. In this note, this approach
is used to compute the explicit expressions for the three-body
Calogero-Sutherland wave functions, which are the Jack polynomials. We
conjecture that similar results are also valid for the more general
two-parameters deformation introduced by Macdonald.Comment: 10 page
Cayley--Klein Contractions of Quantum Orthogonal Groups in Cartesian Basis
Spaces of constant curvature and their motion groups are described most
naturally in Cartesian basis. All these motion groups also known as CK groups
are obtained from orthogonal group by contractions and analytical
continuations. On the other hand quantum deformation of orthogonal group is most easily performed in so-called symplectic basis. We reformulate its
standard quantum deformation to Cartesian basis and obtain all possible
contractions of quantum orthogonal group both for untouched and
transformed deformation parameter. It turned out, that similar to undeformed
case all CK contractions of are realized. An algorithm for obtaining
nonequivalent (as Hopf algebra) contracted quantum groups is suggested.
Contractions of are regarded as an examples.Comment: The statement of the basic theorem have correct. 30 pages, Latex.
Report given at X International Conference on Symmetry Methods in Physics,
August 13-19, 2003, Yerevan, Armenia. Submitted in Journal Physics of Atomic
Nucle
Yangians, finite W-algebras and the Non Linear Schrodinger hierarchy
We show an algebra morphism between Yangians and some finite W-algebras. This
correspondence is nicely illustrated in the framework of the Non Linear
Schrodinger hierarchy. For such a purpose, we give an explicit realization of
the Yangian generators in terms of deformed oscillators.Comment: LaTeX2e, 10 pages, Talk presented by E. Ragoucy at ACTP-Nankai
Symposium on Yang-Baxter systems, non linear models and their applications,
Seoul (Korea) October 20-23, 199
Recommended from our members
Comparison of beam simulations with measurements for a 1.25-MeV, CW RFQ
The Low-Energy Demonstration Accelerator (LEDA) injector is tested using the Chalk River Injector Test Stand (CRITS) radio-frequency quadrupole (RFQ) as a diagnostic instrument. Fifty-keV, dc proton beams are injected into the 1.25-MeV, CW RFQ and transported to a beamstop. Computer-simulation-code predictions of the expected beam performance are compared with the measured beam currents and beam profiles. Good agreement is obtained between the measurements and the simulations at the 75-mA design RFQ output current
ESC Working Group Cellular Biology of the Heart: Position Paper: Improving the pre-clinical assessment of novel cardioprotective therapies
Ischemic heart disease (IHD) remains the leading cause of death and disability worldwide. As a result, novel therapies are still needed to protect the heart from the detrimental effects of acute ischemia-reperfusion injury, in order to improve clinical outcomes in IHD patients. In this regard, although a large number of novel cardioprotective therapies discovered in the research laboratory have been investigated in the clinical setting, only a few of these have been demonstrated to improve clinical outcomes. One potential reason for this lack of success may have been the failure to thoroughly assess the cardioprotective efficacy of these novel therapies in suitably designed pre-clinical experimental animal models. Therefore, the aim of this Position Paper by the European Society of Cardiology Working Group Cellular Biology of the Heart is to provide recommendations for improving the pre-clinical assessment of novel cardioprotective therapies discovered in the research laboratory, with the aim of increasing the likelihood of success in translating these new treatments into improved clinical outcomes
- …