648 research outputs found

    Evaluation of the dual mTOR / PI3K inhibitors Gedatolisib (PF-05212384) and PF-04691502 against ovarian cancer xenograft models

    Get PDF
    We are grateful to Wyeth/Pfizer (ONC-EU-150) and to the Scottish Funding Council (SRDG HR07005) for support of this study.This study investigated the antitumour effects of two dual mTOR/PI3K inhibitors, gedatolisib (WYE-129587/PKI-587/PF-05212384) and PF-04691502 against a panel of six human patient derived ovarian cancer xenograft models. Both dual mTOR/PI3K inhibitors demonstrated antitumour activity against all xenografts tested. The compounds produced tumour stasis during the treatment period and upon cessation of treatment, tumours re-grew. In several models, there was an initial rapid reduction of tumour volume over the first week of treatment before tumour stasis. No toxicity was observed during treatment. Biomarker studies were conducted in two xenograft models; phospho-S6 (Ser235/236) expression (as a readout of mTOR activity) was reduced over the treatment period in the responding xenograft but expression increased to control (no treatment) levels on cessation of treatment. Phospho-AKT (Ser473) expression (as a readout of PI3K) was inhibited by both drugs but less markedly so than phospho-S6 expression. Initial tumour volume reduction on treatment and regrowth rate after treatment cessation was associated with phospho-S6/total S6 expression ratio. Both drugs produced apoptosis but minimally influenced markers of proliferation (Ki67, phospho-histone H3). These results indicate that mTOR/PI3K inhibition can produce broad spectrum tumour growth stasis in ovarian cancer xenograft models during continuous chronic treatment and this is associated with apoptosis.Publisher PDFPeer reviewe

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel Οˆβ€²β†’Ο€+Ο€βˆ’J/ψ(J/Οˆβ†’Ξ³ppΛ‰)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06Γ—1081.06\times 10^8 Οˆβ€²\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppΛ‰p\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=1861βˆ’13+6(stat)βˆ’26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Ξ“<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Differences in carotid arterial morphology and composition between individuals with and without obstructive coronary artery disease: A cardiovascular magnetic resonance study

    Get PDF
    Objective: We sought to determine differences with cardiovascular magnetic resonance (CMR) in the morphology and composition of the carotid arteries between individuals with angiographically-defined obstructive coronary artery disease (CAD, = 50% stenosis, cases) and those with angiographically normal coronaries (no lumen irregularities, controls). Methods and results: 191 participants (50.3% female; 50.8% CAD cases) were imaged with a multi-sequence, carotid CMR protocol at 1.5T. For each segment of the carotid, lumen area, wall area, total vessel area (lumen area + wall area), mean wall thickness and the presence or absence of calcification and lipid-rich necrotic core were recorded bilaterally. In male CAD cases compared to male controls, the distal bulb had a significantly smaller lumen area (60.0 [plus or minus] 3.1 vs. 79.7 [plus or minus] 3.2 mm[super]2, p less than 0.001) and total vessel area (99.6 [plus or minus] 4.0 vs. 119.8 [plus or minus] 4.1 mm[super]2; p less than 0.001), and larger mean wall thickness (1.25 [plus or minus] 0.03 vs. 1.11 [plus or minus] 0.03 mm; p = 0.002). Similarly, the internal carotid had a smaller lumen area (37.5 [plus or minus] 1.8 vs. 44.6 [plus or minus] 1.8 mm[super]2; p = 0.006) and smaller total vessel area (64.0 [plus or minus] 2.3 vs. 70.9 [plus or minus] 2.4 mm[super]2; p = 0.04). These metrics were not significantly different between female groups in the distal bulb and internal carotid or for either gender in the common carotid. Male CAD cases had an increased prevalence of lipid-rich necrotic core (49.0% vs. 19.6%; p = 0.003), while calcification was more prevalent in both male (46.9% vs. 17.4%; p = 0.002) and female (33.3% vs. 14.6%; p = 0.031) CAD cases compared to controls. Conclusion: Males with obstructive CAD compared to male controls had carotid bulbs and internal carotid arteries with smaller total vessel and lumen areas, and an increased prevalence of lipid-rich necrotic core. Carotid calcification was related to CAD status in both males and females. Carotid CMR identifies distinct morphological and compositional differences in the carotid arteries between individuals with and without angiographically-defined obstructive CAD.Carotid Atherosclerosis (MRI) Progression Study (CAMPS, HL076378) and Cardiovascular Research Training Program (T-32, HL07838); and the General Clinical Research Center at the Wake Forest University School of Medicine (M01 RR-07122)

    Observation of superconductivity at 30 K~46 K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb, and Eu)

    Get PDF
    New iron selenide superconductors by intercalating smaller-sized alkali metals (Li, Na) and alkaline earths using high-temperature routes have been pursued ever since the discovery of superconductivity at about 30 K in KFe2Se2, but all have failed so far. Here we demonstrate that a series of superconductors with enhanced Tc=30~46 K can be obtained by intercalating metals, Li, Na, Ba, Sr, Ca, Yb, and Eu in between FeSe layers by the ammonothermal method at room temperature. Analysis on their powder X-ray diffraction patterns reveals that all the main phases can be indexed based on body-centered tetragonal lattices with a~3.755-3.831 {\AA} while c~15.99-20.54 {\AA}. Resistivities show the corresponding sharp transitions at 45 K and 39 K for NaFe2Se2 and Ba0.8Fe2Se2, respectively, confirming their bulk superconductivity. These findings provide a new starting point for studying the properties of these superconductors and an effective synthetic route for the exploration of new superconductors as well.Comment: 22 pages, 5 figure

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as β€˜accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. β€˜Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Reemerging superconductivity at 48 K across quantum criticality in iron chalcogenides

    Full text link
    Pressure plays an essential role in the induction1 and control2,3 of superconductivity in iron-based superconductors. Substitution of a smaller rare-earth ion for the bigger one to simulate the pressure effects has surprisingly raised the superconducting transition temperature Tc to the record high 55 K in these materials4,5. However, Tc always goes down after passing through a maximum at some pressure and the superconductivity eventually tends to disappear at sufficiently high pressures1-3. Here we show that the superconductivity can reemerge with a much higher Tc after its destruction upon compression from the ambient-condition value of around 31 K in newly discovered iron chalcogenide superconductors. We find that in the second superconducting phase the maximum Tc is as high as 48.7 K for K0.8Fe1.70Se2 and 48 K for (Tl0.6Rb0.4)Fe1.67Se2, setting the new Tc record in chalcogenide superconductors. The presence of the second superconducting phase is proposed to be related to pressure-induced quantum criticality. Our findings point to the potential route to the further achievement of high-Tc superconductivity in iron-based and other superconductors.Comment: 20 pages and 7 figure

    Search for the standard model Higgs boson at LEP

    Get PDF

    Influence of Genetic Background and Tissue Types on Global DNA Methylation Patterns

    Get PDF
    Recent studies have shown a genetic influence on gene expression variation, chromatin, and DNA methylation. However, the effects of genetic background and tissue types on DNA methylation at the genome-wide level have not been characterized extensively. To study the effect of genetic background and tissue types on global DNA methylation, we performed DNA methylation analysis using the Affymetrix 500K SNP array on tumor, adjacent normal tissue, and blood DNA from 30 patients with esophageal squamous cell carcinoma (ESCC). The use of multiple tissues from 30 individuals allowed us to evaluate variation of DNA methylation states across tissues and individuals. Our results demonstrate that blood and esophageal tissues shared similar DNA methylation patterns within the same individual, suggesting an influence of genetic background on DNA methylation. Furthermore, we showed that tissue types are important contributors of DNA methylation states

    Genome Expression Profile Analysis of the Immature Maize Embryo during Dedifferentiation

    Get PDF
    Maize is one of the most important cereal crops worldwide and one of the primary targets of genetic manipulation, which provides an excellent way to promote its production. However, the obvious difference of the dedifferentiation frequency of immature maize embryo among various genotypes indicates that its genetic transformation is dependence on genotype and immature embryo-derived undifferentiated cells. To identify important genes and metabolic pathways involved in forming of embryo-derived embryonic calli, in this study, DGE (differential gene expression) analysis was performed on stages I, II, and III of maize inbred line 18-599R and corresponding control during the process of immature embryo dedifferentiation. A total of ∼21 million cDNA tags were sequenced, and 4,849,453, 5,076,030, 4,931,339, and 5,130,573 clean tags were obtained in the libraries of the samples and the control, respectively. In comparison with the control, 251, 324 and 313 differentially expressed genes (DEGs) were identified in the three stages with more than five folds, respectively. Interestingly, it is revealed that all the DEGs are related to metabolism, cellular process, and signaling and information storage and processing functions. Particularly, the genes involved in amino acid and carbohydrate transport and metabolism, cell wall/membrane/envelope biogenesis and signal transduction mechanism have been significantly changed during the dedifferentiation. To our best knowledge, this study is the first genome-wide effort to investigate the transcriptional changes in dedifferentiation immature maize embryos and the identified DEGs can serve as a basis for further functional characterization
    • …
    corecore