933 research outputs found

    The precession and nutation of deformable bodies

    Get PDF
    Precession and nutation of deformable bodie

    A post-Newtonian diagnosis of quasiequilibrium configurations of neutron star-neutron star and neutron star-black hole binaries

    Full text link
    We use a post-Newtonian diagnostic tool to examine numerically generated quasiequilibrium initial data sets for non-spinning double neutron star and neutron star-black hole binary systems. The PN equations include the effects of tidal interactions, parametrized by the compactness of the neutron stars and by suitable values of ``apsidal'' constants, which measure the degree of distortion of stars subjected to tidal forces. We find that the post-Newtonian diagnostic agrees well with the double neutron star initial data, typically to better than half a percent except where tidal distortions are becoming extreme. We show that the differences could be interpreted as representing small residual eccentricity in the initial orbits. In comparing the diagnostic with preliminary numerical data on neutron star-black hole binaries, we find less agreement.Comment: 17 pages, 6 tables, 8 figure

    `Similar' coordinate systems and the Roche geometry. Application

    Full text link
    A new equivalence relation, named relation of 'similarity' is defined and applied in the restricted three-body problem. Using this relation, a new class of trajectories (named 'similar' trajectories) are obtained; they have the theoretical role to give us new details in the restricted three-body problem. The 'similar' coordinate systems allow us in addition to obtain a unitary and an elegant demonstration of some analytical relations in the Roche geometry. As an example, some analytical relations published in Astrophysical Journal by Seidov in 2004 are demonstrated.Comment: 9 pages (preprint format), 9 figures, published in Astrophysics and Space Scienc

    The Rossiter-McLaughlin effect and analytic radial velocity curves for transiting extrasolar planetary systems

    Full text link
    A transiting extrasolar planet sequentially blocks off the light coming from the different parts of the disk of the host star in a time dependent manner. Due to the spin of the star, this produces an asymmetric distortion in the line profiles of the stellar spectrum, leading to an apparent anomaly of the radial velocity curves, known as the Rossiter - McLaughlin effect. Here, we derive approximate but accurate analytic formulae for the anomaly of radial velocity curves taking account of the stellar limb darkening. The formulae are particularly useful in extracting information of the projected angle between the planetary orbit axis and the stellar spin axis, \lambda, and the projected stellar spin velocity, V sin I_s. We create mock samples for the radial curves for the transiting extrasolar system HD209458, and demonstrate that constraints on the spin parameters (V sin I_s, \lambda) may be significantly improved by combining our analytic template formulae and the precision velocity curves from high-resolution spectroscopic observations with 8-10 m class telescopes. Thus future observational exploration of transiting systems using the Rossiter - McLaughlin effect is one of the most important probes to better understanding of the origin of extrasolar planetary systems, especially the origin of their angular momentum.Comment: 39 pages, 16 figures, Accepted to ApJ. To match the published version (ApJ 623, April 10 issue

    The precession and nutation of deformable bodies IV - Deformation of self-gravitating elastic solids

    Get PDF
    Equivalent equations which govern deformations of self-gravitating elastic bodies of nonuniform internal temperatur

    Structure and evolution of rotationally and tidally distorted stars

    Full text link
    This paper aims to study the configuration of two components caused by rotational and tidal distortions in the model of a binary system. The potentials of the two distorted components can be approximated to 2nd-degree harmonics. Furthermore, both the accretion luminosity (σi\sigma_{i}) and the irradiative luminosity are included in stellar structure equations. The equilibrium structure of rotationally and tidally distorted star is exactly a triaxial ellipsoids. A formula describing the isobars is presented, and the rotational velocity and the gravitational acceleration at the primary surface simulated. The results show the distortion at the outer layers of the primary increases with temporal variation and system evolution. Besides, it was observed that the luminosity accretion is unstable, and the curve of the energy-generation rate fluctuates after the main sequence in rotation sequences. The luminosity in rotation sequences is slightly weaker than that in non-rotation sequences. As a result, the volume expands slowly. Polar ejection is intensified by the tidal effect. The ejection of an equatorial ring may be favoured by both the opacity effect and the ge(θ,φ)g_{e}(\theta,\varphi)-effect in the binary system.Comment: 10 pages, 17 figures,Accepted by Astronomy and Astrophysic

    Mass Transfer by Stellar Wind

    Full text link
    I review the process of mass transfer in a binary system through a stellar wind, with an emphasis on systems containing a red giant. I show how wind accretion in a binary system is different from the usually assumed Bondi-Hoyle approximation, first as far as the flow's structure is concerned, but most importantly, also for the mass accretion and specific angular momentum loss. This has important implications on the evolution of the orbital parameters. I also discuss the impact of wind accretion, on the chemical pollution and change in spin of the accreting star. The last section deals with observations and covers systems that most likely went through wind mass transfer: barium and related stars, symbiotic stars and central stars of planetary nebulae (CSPN). The most recent observations of cool CSPN progenitors of barium stars, as well as of carbon-rich post-common envelope systems, are providing unique constraints on the mass transfer processes.Comment: Chapter 7, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe

    Measurement of Exclusive rho^0 rho^0 Production in Two-Photon Collisions at High Q^2 at LEP

    Full text link
    Exclusive rho rho production in two-photon collisions involving a single highly virtual photon is studied with data collected at LEP at centre-of-mass energies 89GeV < \sqrt{s} < 209GeV with a total integrated luminosity of 854.7pb^-1 The cross section of the process gamma gamma^* -> rho rho is determined as a function of the photon virtuality, Q^2 and the two-photon centre-of-mass energy, Wgg, in the kinematic region: 1.2GeV^2 < Q^2 < 30GeV^2 and 1.1GeV < Wgg < 3GeV

    Accretion of Planetary Material onto Host Stars

    Full text link
    Accretion of planetary material onto host stars may occur throughout a star's life. Especially prone to accretion, extrasolar planets in short-period orbits, while relatively rare, constitute a significant fraction of the known population, and these planets are subject to dynamical and atmospheric influences that can drive significant mass loss. Theoretical models frame expectations regarding the rates and extent of this planetary accretion. For instance, tidal interactions between planets and stars may drive complete orbital decay during the main sequence. Many planets that survive their stars' main sequence lifetime will still be engulfed when the host stars become red giant stars. There is some observational evidence supporting these predictions, such as a dearth of close-in planets around fast stellar rotators, which is consistent with tidal spin-up and planet accretion. There remains no clear chemical evidence for pollution of the atmospheres of main sequence or red giant stars by planetary materials, but a wealth of evidence points to active accretion by white dwarfs. In this article, we review the current understanding of accretion of planetary material, from the pre- to the post-main sequence and beyond. The review begins with the astrophysical framework for that process and then considers accretion during various phases of a host star's life, during which the details of accretion vary, and the observational evidence for accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie
    corecore