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I. ABSTRACT

The first part of the present semiannual report covers a discussion
of the recent data on the lunar gravity field as it pertains to the
mechanical ellipticities and mas's distribution of the Moon. It is
tentatively concluded that the Moon departs more from hydrostatic
equilibrium than was believed in the pre-Orbiter era, and that its density
is almost everywhere constant with a slight increase with depth.

The second part of the report contains the formulation from first
principles of the problem of the physical librations of the Moon, which
is assumed to be a compressible fluid bf arbitrarily high viscosity.

The case of solid bodies is covered by this formulation as a limiting
case. A self-gravitating viscous mass is allowed to oscillate in an
arbitrary time-dependent external field, which in the case of the Moon,
will be represented by the gravity field emanating from the Earth. The
solar attraction will be treated as is customary in the pertinent
literature as a perturbation which can be inserted as one additional
term in the right-hand side of the Eulerian equations. This term is

available in closed form.



ITI. INTRODUCTION

The kinetic behavior of the Moon around its center of mass is
"almost solely governed by its principle moments of inertia, or more
precisely, by its mechanical ellipticities which appear in the Eulerian .
equations of motion. Our main task in this project is to study tﬁe physical
librations, assuming that the mechanical ellipticities vary in a periodic
fashion, and attempt to apply the theoretical results to data that will
eventually be made available by analyses of tracking data of Lunar Or-
biters. The fact that tidal deformation of the lunar globe can be
anticipated on the grounds that such deformations are observable on a
smaller scale on the terrestrial globe, offers firsthand justification of

the present effort.

It is therefore eséential in this connection that a number of
estiﬁates of the mechanical ellipticities of the Moon be made at regular
(if possible) intervals over a long period of time so that periodicities
of various frequencies will be detected. Recent reductions of tracking
data of lunar satellites indicate that pre-Orbiter estimates of these

quantities are very inaccurate and, therefore, one has to depend on future

estimates in order to obtain an answer regarding their time variation.

Quantities that bear on the present problem are those that give a
measure of the extent to which the lunar globe departs from hydrostatic
‘equilibrium. Large depaftures from a state of equilibrium indicate the
existence of uncompensated differential stresses which, in turn, imply a

high viscosity coefficient, or, at the extreme, a solid condition. The



mass distribution is also essential here. A study of the motion of the
nodal line of the Moon made on the basis of pre-Orbiter data has resulted
in the paradoxical conclusion that most of the mass lies on the surface
(Eckert, 1965). The hypothesis advanced to explain this result is that
the higher harmonics, which have been neglected in the above analysis,‘
are not in reality small. While this seems a very reasonable explana-
tion, it can be added that the time variation of the various harmonics,
including the one of second order, can be responsible for bringing about
such a paradox. 1In the first part of this report we present a discussion
of the results of Luna 10 from which we conclude that the Moon is almost
homogeneous and that its density increases very slightly as we move toward
the center. Thus, unless there are errors in the analysis by Eckert, the

Moon must either have large higher harmonics, or be deformable, or both.

The differential equations which govern the motions of self-gravitating
bodies about their center of gravity--whether free or forced--have been
known since the early days of the history of rational mechanics; and the
investigators of their solutions bearing on the precession and nutation of
the Earth, or the physical librations of the Moon, included (to name only
the greatést) Newton, Euler, Lagrange and Laplace. All these investiga-
tors assumed in common that the body moving about its center of gravity
in an external field of force can be regarded as rigid; and its external
form (or moments of inertia) be fixed and independent of the time. How-
ever, it was not till in the second half of the 19th century that it has

been gradually realized that a self-gravitating body of the mass of the



Earth or the Moon cannot be regarded as rigid or incompressible; moreover,
observations have revealed (at least in the case of the Earth) that its
form responds to a fluctuating external field of force through bodily

tides.

A mathematical treatment of the motion of deformable bodies about
their center of mass in an external field of force was, héwever, slow
to come (cf. Liouville, 1858; Gyldén, 1871; Oppenheimer, 1885; Darwin, 1879;
Poincaré, 1910) and is still far from being adequately solved for the precession,
or nutation of the Earth, while its bearing on the physical librations
of the lunar globe has not yet even been considered. The aim of the
present project will be to provide a more comprehensive treatment of this
subject than has been done by all previous investigators, and to do so
on the basis of the fundamental equations of hydrodynamics, in which the
three velocity componenﬁs u, v, w will be systematically expressed in
terms of the independent rotations, about the three respective axes x,
¥y, z, with angular velocities Wes wy, and w, . Departures from a hydro-
dynamical treatment, necessitated if the response of a deformable body
to an external strain is that of an elastic solid rather than that of a

viscous fluid, (i.e., if we deal with a '"Maxwell" rather than "Kelvin-Voigt"

body), will be taken up in the concluding report.



III. RECENT DATA: MECHANICAL ELLIPTICITIES

The recently published results (Akim, 1966) of the analysis of the
motion of Luna 10, although in close agreement with earlier values (Goudas,
1964) céncerning second zonal C,3 and sectorial C,, harmonic
coefficients of the lunar force function, have disclosed new facts regarding
the homogeneity and departure oé the Moon from a condition of hydrostatic
equilibrium. In particular, as the following arguments will show, the
Moon is more homogeneous than believed before on the basis of a tentative
value for the third zonal harmonic (Michael et al, 1966, and Goudas et al,

1966), and it departs more from hydrostatic equilibrium than recent studies

(Koziel, 1967) of the physical libration of the Moon have Suggested.

Indeed, without any assumption for the mass distribution, the
values of Cyg (or cyp) and Cpp (or cpp) given in Ref. [1], when

substituted in the expressions

A+ B - 2C B-A
Crg =, Cp = @8]

2 2
2Mr0 4Mr0

where A, B, C are the principal moments of inertia, M the mass

and rp the mean radius, allow us to determine the value of the ratio

f of the mechanical ellipticities a [i.e., (C-B)/A] to
B [i.e., (C-A)/B]. To first order terms the quantity f is given

By the expression

Cop + 2Cy9

f =0 (2
Coo - 2Cp2

and, therefore,



£f=0.76 £ 0.04

where the uncertainty represents the maximum error. This value is

three times larger than the one which corresponds to a state of

hydrostatic equilibrium. The most recent studies (Koziel, 1967) of the

physical libration of the Moon have resulted in the value

f = 0.633.

This discrepancy would never exist, nor would it have any consequence at

all for the study of the Eulerian motion of the Moon around its center of

mass, if the linearized third equation of motion did not have a

singularity at the value f = 0.66, which makes the corrective process

determining f dependent upon the initial value adopted for it.

Ironically, the value determined by Hayn (1907) sixty years ago, and which

is in use today by the Astronomical Ephemeris and Nautical Almanac for

the computation of the ephemeris of physical libration, is £ = 0.75,
i.e., almost the exact value given by Luna 10.
The assumption of homogeneity and the values of the constants

Cog and Cp, permit the determination of not only the ratio f but

also the moments of inertia, and therefore the mechanical ellipticities

of the Moon. The pertinent formulae for the moments of inertia

are
2Mr3
A=—— 1+ 320/2 = 3322)
T 2Mr3
B=—2—(1+ 3j0/2 + 3j22)
ZMr%
C= (1 - 3jz0)

5

(3)



. 5 .
where jjyq = %’CZO: Joo = §'C22 and M is the total mass of the
Moon. The value of f corresponding to the above expressions (3) is

the same as the one given by equation (2). However, the mechanical

ellipticities o, B8 and vy (y = 8 - a) are

a = 0.000445 * 0.000060

8 = 0.000586

1+

0.000011 4)

y = 0.000141 * 0.000071

for the homogeneous Moon and

@ = 0.000478 + 0.000030
8 = 0.000629 * 0.000006 5)
y = 0.000151 + 0.000036 )

for the true case. The uncertainties are again maximum errors and,
although to the best of our knowledge the true values are definitely
within the intervals indicated, we cannot yet decide the extent to

which the mass distribution departs from perfect homogeneity. To say

the least, the results from Luna 10 are inconclusive in régard Eé“EﬁE‘B;ﬁBEﬁEEis

(Eckert, 1965) that the surface layers of the Moon may be more dense than

the ones closer to the center. A simple calculation shows that the

value of 3C/2Mr? is 0.56 + 0.18, i.e., a great deal smalle? than the
value 0.965 suggested by Eckert to explain the motion of the node.
Keeping in mind that the value corresponding to homogeneity is 0.6 and
‘that values less than this mean increasing density with depth, then
forgetting for the time being the given uncertainty--which again is a maximum

error--we find that the lunar central regions are a little denser than



the outer layers. Although the uncertainty weakens the conclusion some-
what, the value given by Eckert is definitely unacceptable, since it lies
6utside the range indicated éy the maximum error. As a result, a large
portion--if not all--of the nodal motion produced by the asphericity of
the Moon, should find an explanation other than a peculiar distribution
of mass postulated by Eckert. The best explanation one can advance is an
assertion that a large part of the motion of the node is produced by the
total effect of higher—-order moments which, the best estimates available
indicate, are of the same order as the moments of second order.

As far as the quantity f goes, Luna 10 has placed it on the other
side of the singularity, thus giving a strong confirmation of the view
that the Moon is far from hydrostatic equilibrium--a fact which indicates
that no liquid parts (such as a liquid core) ever existed on the Moon, or,

if they did, that their relative size was or is too small.



IV. EQUATIONS OF THE PROBLEM

As is well known, the Eulerian fundamental equations of hydrodynamics
governing the motion of compressible viscous fluids can be expressed in

rectangular-coordinates in the symmetrical form

Du _ 3@ 3P XX , __ Xy xz
Dt TP T ax * 9x + 3y + oz ° (6)
v _ 18_§£+3?2§+Eﬂ+i’12_ (7)
Dt TP oy T oy T Tax 3y %z ?
2ﬂ=p3;$l_§_li+iciz_>s+3§1+3°_za (8)
P Dt 3z _ 9z | ox 3y 3z ?

where u, v, w denote the velocity components of fluid motion, at the

time t, in the direction of increasing coordinates x, y, z, respectively;

2 2 2 (9)
u == + v 3y + w 5z

D )
= ==+
Dt ot
representing the Lagrangian time-derivative (following the motion); o
stands for the local density of the fluid; P, for its pressure; §, for

the total potential (internal as well as external) of all forces

acting upon it; and

2 3 :
S =3 M35 - 0h (10)
=2 v _
cyy =3 u{3 5y A}, (11)
=2 oW _
0zz ) p{3 3z A}’ (12)

cxy = M 3y = ny’ (13)
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oW BV}

og, = Moy t 50t = 0y (14)
- ,[9u . dwy _
0zx B u{Bz + ax! ze’ (15)

are the respective components of the viscous stress tensor, where u

denotes the coefficient of viscosity and

du v ow
ou . 9V, oW 16
A Ix + dy + 2z? (16)

"

the divergence of the velocity vector of the fluid.

As is well known, equations (6) =~ (8) safeguard the conservation
of momentum of the underlying dynamical problem; and as such represent
only one-half of the system necessary for a complete specification of the

six dependent variables

u, v, w;

e, P, 0

of our problem. Of the remaining three equations, two can be adjoined

with relative ease: mnamely, the equation of continuity

Do, -
. Dt + pA 0 (17)

safeguarding the conservation of mass, and the Poisson equation
V2Q = -4mGp (18)

which must be satisfied by the gravitational potential (G denoting the

constant of gravitation).
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The sole remaining equation required to render the solution of our
system determinate (for an appropriate set of boundary conditions) must
be derived from the principle of the conservation of energy, in the form
of an "equation of state" relating P and p; but its explicit formu-

lation will be postponed until a later stage of our analysis.



V.

THE COMPONENTS OF VELOCITIES AND ACCELERATIONS

~12-

In order to apply the system of equations set up in the preceding -

section for the study of the motion of a self-gravitating body about its

center of gravity, consider the transformation of rectangular coordinates

between an tnertial (fixed) system of space axes

system of body (primed) axes

1

X5 ¥y 2,

and a rotating

x', y', z', possessing the same origin,

but with the primed axes rotated with respect to the space axes by the

Eulerian angles ¢, 6, ¥,

the accompanying Figure I.

in accordance with a scheme illustrated on

As is well known, the transformation of coordinates from the

space to the body axes is governed by the following matrix equation

ay; app a132

where the coefficients a

ik’

assume the explicit forms

ajl
a2

a3

az1
azz

azs

cos Y cos

-sin ¢ cos

cos Y sin

-sin Y sin

¢ +

¢ +

Xl
yl
Z'

expressed

cos 6
cos 6

sin 6

cos 6
cos 6

sin ©

sin

sin

sin

cos

cos

cos

(19)

in terms of the Eulerian angles

¢ sin

¢ cos

¢ sin

¢ cos

v,
Vs

we

v,
v,

(20)

(21)
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Line \ of Nodes

Fig.
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az; = sin ¢ sin 6,
azp = cos ¢ sin 9, (22)

azz = cos 6.

In order to obtain the corresponding space velocity-components
u, v, w, let us differentiate equations (19) with respect to the time.
With dots denoting hereafter ordinary (total) derivatives with respect

to t, we find that

Xx=u-= éllx' + a0y + 5:1132' + a]_lf(' + apy' + ajsz', (23)
y=vs= a1x' + arry' + é23z' + ag k' + ag,y' + ap3z’', (24)
z=w= é31X' + azy' + é332' + 831}'{' + a32}'" + a33é'; (25)

whereas the body velocity-components u', v', w' follow from

X =u = é11X+ 5.21}7 + éalz

(26)

+ 311)'( + 8.21}.7 + aglé,

y' = v = apx + &y + a3z
27)

+ 812}.( + 8.22}.7 + a322,

z' = w' = a13x + a3y + a33z
(28)

+ a13)'< + a23}°7 + a33é’;

where
é‘ll = ajpb ~- az)¢ + 8316 sin ¢ = a31my - a21mz

(29)

812w, T 8130015



‘ a12 = -apn ¥ - a¢ + azd sin ¢ = a3oby = azou,
; ' (30)
= a13wx, - allmz,,
a3 = T 823 * 3330 sin ¢ = agze, - 230,
(31)
= all‘”y' T 812wy
317 = axy + a ¢ - azb cos ¢ = ajle, - agw, :
(32)
= asol , - w
22. z! az3 yl:
az2 = a1V + ajod - a3z»f cos ¢ = ajpw, - azw_
(33)
= a w - w
23 %! azi 213
ag3 = + aj3¢ - a33b cos ¢ = ajzw, ~ azzw
(34)
= azlwy. - a22wx.;
az] = a0 + 6 sin ¢y cos 8 = axjw_ - a;jw
x y (35)
= a32wz, - a33wy.,
532 = -aq3 Y + 0 cos P cos O = agow_ — ajrw
x y (36)
= 8330 0 T a31W 0,
.a33 = - 06 sin 6 = az3w, - aj3w
y (37)
T 831000 T 8320,
where, taking advantage of the fact that
ajyé)) +ajpdyy +aj3dy ;=0
az1dp) + agpdpy + ap3dy3 =0 (38)

I
o

azjé3] + azpdzy + azzdzz =



and

ajjay; + az1dy; + asjag; =
ajpd1p + aydy,; + azpagy =

aj3a)3 + az3dyy + agsdggy =

the respective angular velocities of rotation are given by

= + 33, +
Wy (az143;

-(a3jaz; +

-(aja;3; +

-(ag1a;; +

space axes;

= +(a13é12 +

= -(ajpa;3 +

= +(allé13 +

= -(aj3i;) +

= +(a12é11 +

= -(ajja); +

-16—~

apoazy +

azpazy +

agpay, +

ajpagy +

ajpas, +

azoayp +

az3apy

azay3

az1ap3

a3y

azpds

azidpy

az3a33)

a33az3),

az3ajz)

aj3azsl,

aj3ays)

ap3ais),

+ az3d3p)

+ a3pazz),

+ azjazj)

+ aj3az),

+ azpas;)

+ azjaszy),

(39)

(40)

(41)

(42)

(43)

(44)

(45)
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with respect to the body axes; the pairs of alternative equations arising

from the fact that, by a time—differéntiation of the relationms aijaik = ij
it follows that aijéik + aikéij = 0. ' |
Inserting in the equatioms (40)-(45) from (29)-(37) it
follows that, in terms of the Eulerian angles,
w, = 6 cos ¢ + & sin 8 sin ¢, (46)
wy = § sin ¢ - @ sin ¢ cos ¢, 47)
w, = + ¢ cos 6 + 63 (48)
while
wer = $ sin 8 sin y + § cos y, (49)
w .= ¢ sin 8 cos y - § sin y, (50)
w v = ¢ cos B + 9§, (51)

as could be also directly verified by an application of the inverse of

the transformation (19), in accordance with which

w y < allmx + 321wy + a31wz,

X

wy. = alzwx + a22wy + a32wz, (52)
= + a + ajz3w .

wor T arsby 234y 33w,

With the aid of the preceding results the equations (23)-(25)
or (26) - (28) for the velocity-components with respect to the space or

body axes can be reduced to the forms
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u=zw - yw + ua
v =xw ~- zw, + v
W= yw - xe + oW
or
u' = —z'wy, + y'wz, + ug,
vi=-x"w , +z2'w_, + vy
z X ’
w' = —y'mx, + x'wy, + wp,
where

ug = ajju + axv + azw
Vo = ajpu + ansoVv + azow

wWg = ajzu + azzv + a33w

(53)
(54)

(55)

(56)

(57)

(58)

(59)

are the space velocity components in the direction of the rotating axes

x', y', z'; and

ub = allu' + 312\7' + 813W'
V(') = azlu' + a22v' + ap 3W' (60)
W(') = a31u' + a32V' + a33w'

are the body velocity components in the direction of the fixed axes

Xy, Y5 2.

In order to specify the appropriate forms of the components of
acceleration, let us differentiate the foregoing expressions (53)-
(58) for the velocity components with respect to the time. Doing

so we find that those with respect to the space axes assume the forms
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.=‘ . - - - I'

u wmy + zwy Ve, - yo, + 4§, (61)
'= L] - - » .'

v uwz + xmz wwx zwx + Vg, (62)
.= - - - - .y N

w Ve + yo uwy xwy + Wi, (63)

where the velocity components u, v, w have already been given by equa-

tions

(53)-(55); and where, by differentiation of (60),

1.1(') = allix' + alz{l' + ajsw'

+apu’ + appv' + apav’, _ (64)
vy = ap1l' + ayyV' + apgw!

+ apju’ + a,,v' + apsw’, (65)
v o 1 > 1 S |
wy = azju + az,v. + azgw

+ é.31"l.1' + é.32V' + é33W'. (66)

The first three terms in each of these expressions represent obviously

the body accelerations with respect to the space axes; and we shall

abbreviate them as

Since,

aiin' + apv' +a;w = (D),
ay1u’ + a V' +aygw' = (Vg (67)
azu' + az,v' + agqw' = () g

moreover, by insertion from (29)-(31)
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. PR e e i e e

éllu' + élzv' + él3w' = (a31wy - a21wz)u'
+ - a !
(a32wy zzwz)V

+ (a33wy - a23w')w'

wy(a31u' + azv' + azgw')
- wz(aglu' + asov' + apgw')

= mywé - wzva; (68)

and, similarly,

agju' + azov' + asgw' = wzué - w Wy (69)
while
azju' + azv' + azw' = w Vo - w ul, (70)
equations (61)-(63) can be rewritten in a more explicit form
- = _ 2 2 \ _ L] (]
u x(wy + wz) + y(wxuy wz) + z(wxwz + wy)
+ (0§ + 2(w6wy - vbwz), (71)
¢ = 2 2 - . + .
v y(wz + wx) + z(wywz mx) + x(wxmy wz)
+ (6)6 + 2(u6wz - wéwx), (72)
and
o 2 2 _ e .
w z(wx + wy) + x(wxwz wy) + y(wywz + wx)
(AN} ' !
. + (w)0 + 2(v0wx uowy). (73)

The foregoing equations refer to accelerations with respect to the
inertial system of space axes. Those with respect to the (rotating)

body axes can be obtained by 2n analcgous process from the equaticns
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1. .

u' = _W'w}" - Z'&)y. + V'mzv +y “’zv + up, (74)

v' o= —u'wz, - x'&z. + W'wxv + Z'&Xv + Vo, (75)

w' = —V'wxp - y'&x. + U'wyv + X'&y'v+ WO’ (76)
equivalent to  (61)-(63); which on being treated in the same way

as the latter can eventually be reduced to the form

ﬁ' = "X'(wzy' + wzzv) + y'(wxlwyt + &zl) + z'(wwizl - éyl)
+ (ﬁ)o - Z(Wom v~ VoW V) a7
Y z
v' = —y'(wzz' + w2X|) + Z'(ll)vazl + (l)xq) + x' (wwiyv - a’z')
+ (Mo - 2(ugw_s = wou_4), (78)
Z X
&' = —z'(wzx' + wzy,) + x'(wx,wz. + éyv) + y'(wylwzl - &x')

+ (&)0 - 2(v0wx, - quy,), (79)

where the space velocity components ugy, vg, wg in the direction of
increasing x', y', z' continue to be given by equations (59); while

the corresponding components of the accelerations are given by

(1) o
(Mo

ajju + az)v + azw,

alzﬂ + azzﬁ + a32W, (80)

(ﬁ)o = a13ﬁ + a23§ + 333&.

If, in particular, we consider the restricted case of a rotation about

It

w = 0), equations (71)-(73) will

the z-axis only (so that W y

reduce to the system

1

(6)5 - 2VUE‘+ Xwi - Yuw_,

)

g 1 2 [}
(N§ + 2uwz + yw, + xb_ (81)

)
N
e
p—4
o



. while equations (77)-(79) will likewise reduce to
@t = (Do + 2vie,, + x'eZ, + ',
V= (Mo - 20w, + y'wi, - x'hy, (82)
@ = | Gl -

It is the accelerations in the cartouches of the two systems--referred
as they are to the inertial space axes--which should be identified with

the Lagrangian time-derivatives

>
DV
Dt

on the left-hand sides of the equations (7) - (8) of motioﬁ if these

are referred to the inertial or rotating axes of coordinates.

A closing note concerning the time differentiation of the coordinates

or velocities should be added in this place. As
x = x(t), y=yt), =z = z(t), (83)

it follows that

)'c: =g_2(___33(_
U T4 T er
. _ d 9
s - o .4y _ 3z
2=V s at

i.e., the ordinary (total) and partial derivatives of the coordinates
with respect to the time are obviously identical. This is, however,

no lcnger true of the time-diffcrentistion of the velocities -whether
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linear or angular. As

or

-where the coordinates (83)

consequence,
g zdu_ 3du  9u3x dudy
T dt 9t 3x 3t 3y ot
Jdu du du
ey + u - + v 3y + w

by virtue of

e

for w

For

u = u(x,y,z;t)

v(x,y,z;t)

<
H

w = w(x,y,z;t)

w W
X,¥,2 %y

(84) ; and similarly for

. dw oW 1N oW
©EF T T U T VY

W .
X5¥52

-

are themselves

+ w

’z(x,y,Z;t),

du 3z
dz adt

du
9z

v and

du
2z

(85)

(86)

functions of the time. 1In

(87)

w. Likewise,

(88)

coordinate systems referred to the rotating body axes similar

reltions hold good; care being merely taken to replace the unprimed

coordinates or velocity components by the primed ones.



VI. FORMATION OF THE EULERIAN EQUATIONS
FOR PRECESSION AND NUTATION

In Section II of this report we set up the general form of the equa-
tions governing the motion of compressible &iscous fluids in rectangular
coordinates; and in Section IITI we expressgd its velocity components in
terms of arbitrary rotations about three réétéﬁgdiéf—ékesgw-fhg aim of
the present section will be to combine the fundamental equations (6)-
(8) rewritten in terms of the angular variables w introduced in

’y’

Section IIT in a form suitable for their subsequent solution.

In order to embark on this task, let us multiply equations (71)-

(73) by X%, y, z and form their following differences:

- = 2 2y s 2 _ 2
yw - 2zv = (y¢ + 2z )wx + (y z )wywz

- xy(wy - wxmz) - xz(wz + wxwy)

- yz(w§ - wi)
+ {y(&)é - z(ﬁ)a} + Zy{vaw - uéwy}
- ZZ{u w, = w }, (89)

0 - xw o= (22 + x2)h + (22 - ¥2
ZUu - XW (z X )wy (z X )wxwz
- D - - o+
yz(wz wywx) yx(wX wywz)
- 2 _ .2
zx(wZ wx)

}

- 2x{v6wx - uémy}, (90)

+v{z(ﬁ)5 - x(ﬁ)a} + ZZ{wéwy - véwz
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o gyl = 2 VAW 2 _ 2
xv - yb (x£ +y )wz + (x y )wxmy
—vzx(&)x - mywz) - zy(my + wxwz)
- 2 _ 2
XY(‘-UX wy)’
+ {x(ﬁ)é - y(ﬁ)é} + 2x{u6wz - wéwx}
' ' .

- Zy{wowy - vomz}. (91)
1f so, however, equations (6) - (8) can be combined accordingly to
yield

- e Aro 9 9ap .0 0g . - 92
yw - zv + p{y 32 = Z ay}P {y 5z = 2 BY}Q vIH - 2§, (92)
. o 4 lp, 2 Bap - [, 2 L 2o = -
zu - xw + p{z " ¥ az}P {z 5z " X Bz}g 2F - xH, 93)
X\'I—yﬁ+-l—{x-———y—§-—}P-—{x—‘a——y—a}ﬂ=xg—yg, (94)
p ay 9x oy X
where
acxx aoxy acxz
= 95
. 9 5x T oy T ez ? (95)
aoyx Boyv 30"2
. Y 96
pG 5x T ay | oz ° (96)
. Bczx aogxr aozz
= 97
p3t Ix * y * 9z ’ o7

fepresent the effects of viscosity.

In order to proceed further, let us rewrite the foregoing expressions

in terms of the respective velocity components. Inserting for the

components Uij of the viscous stress tensor from (10) = (15) we

find the expressions on the right-hand sides of equations (95) - (97) to

assume the more explicit forms



ag .. 90 PTe) .
XX+ Xy_+ XZ=uV2u+.E_3A
x oy 0z 3 8x
su _ alan
+2 ox 3§8x
ov | du{op
* Tax * oy .9y
Jau |, aw(au 8
+ 13z * ax\ oz °’ (98)
Boyx chy aoy U A
+ = 24 + L8
9% oy 3z WV T3y
v Aldu
+ —_— e =
2§8y 3$3y
ow , 9v(du
oy dz\ oz
dv , duladu
T gax * ayiax ’ (99)
and
aczx aczy aczz H 0A
= 2 o8
ax | oy T ez MV T3y
dw _ Afop
+ 2;32 3\ oz
du , dw(du
+ gaz + Bxgax
ow . 3v{au
+ §8y+az$8y , (100)

where A denotes, as before, the divergence (16) of the velocity

vector; and V? stands for the Laplacean operator.

Next, let us insert for the velocity components u, v, w from

(53) - (55) ; by doing so we find that
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2 2 2 2 oo o (101)
= -_ ' + - —
Véu = 2V wy ¥V + Viu, 2 o 3y |
2 2 2 2 awz awx (102)
= - ' —_z _ X
Vév xXVew zVew + V v0 + 2 = 7z
Jw oW
VZW = yvzw - XVZ(L) + VZW' + 2 _XxX __y s (103)
] 3 9xX
and
A=yWy—-2 ——'w z iL-— X iL'w
oz a3 dzl vy
du} Bvé dw)
+ ——- -
* y axf z  9x dy MY (104)

Before proceeding further, one feature of basic importance should
be brought out which we by-passed without closer discussion at an earlier
stage: namely, when by virtue of equations (53) - (57) or (58) -
(60) we replacea the three dependent variables u, v, w or u', v', w'
on their left-hand sides by six new variables Wos Wy 0 and ué, vé, Wy
or W1, wy., w1 and wug, vg, wg on their right-hand sides. This
deliberately created redundancy permits us to impose without the loss
of generality additional constraints on these Vériables, not embodied
in the fundamental‘equations of Section II; and this we propose to do at
the present time. We propose, in particular, to assume that tlie primed
axes x'y'z' obtained by a rotation of the inertial system <xyz, about
a fixed origin, in accordance with the transformation (19) remain
rectangular-—-an assumption to wﬁich implies, in effect, that the
Eulerian angles 6, ¢, ¥ involved in the direction cosines a,., and,
therefore, in the angular velocity components wx,y,z or wx',v',z' as
defined by equations  (46) = (48) or (49) - (51) are functions of




will describe a rigid-body rotation of our dynamical system (during which
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the time t alone (for should they depend, in addition, on the spatial
'coordinates x, y, z, a rotation as represented by equations (19) would

result in a curvilinear coordinate system).

This assumption will neatly separate the physical meaning of the two

groups of variables: for while the angular velocity components W g,z
) LA ]

the position of each particle remains unchanged in the primed coordinates);
the remaining velocity components ug, vy, wy will represent de formation

of our body, in the primed system, in the course of time. It is, there-
fore, the latter which will be of particular interest for the main

problem which we have in mind; and in what follows, we propose to investigate

the extent to which their occurrence may modify the structure of our

equations.

In order to do so we notice first that, inasmuch as the angular
velocity components are hereafter to be regarded as functions of t alone

it follows from (101) - (103) that

v2u = v2u),
v2vy = Vzvé, (105)
V2w = Vzwé;

and, similarly, the divergence (104) of the velocity vector will reduce

to
du), v dw!
0
Bl =+ 2
0 0% oy 9z

(106)

In consequence, the corresponding expressions on the right-hand sides

of equations  (98) - (100) are obtained if the velocity components
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u, v, w present there are replaced by wuj, vj, wy; and A by A(').

Therefore,

D{ysf -2G} = U{szw(') - ZVZV(') + %DIA(;}

ou 1 9 v '
+ aX{Dluo + 3x(yw0 zvo)} +

2 2
+ 3-32{2D1w5 = Dyv
L
2 3u0D.
3 ax 1M T3 EDyu,
p{z9 - x3f} = p{zv2u’ - xvzwf') + % D4}
2 9
+ 3 3}%{21)21.10 - Dsw(')}
—a—y. 1 _§_ 1 ]
+ ay{Dzvo + ay(zu0 Xw, ]
2 Jyy
+ 3 '3—5'{2])2‘»70 + Dsué}
ov!
2%, 1
. 3 ayDZ“ + 3 nDsk,
and
) .
~p{xg - yg} = u{xvzvé - yvzu{') + 3 D3A(')
2 du
+ 3'5—};{2D3u6 + D6V(')}
2 92U
+ 33}7{2D3V6 - D6U(')}

_a_l'i ' .9._ v '
+ aZ{D:aw + E)z(xvo yuo)}

(107)

(108)

©(109)
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‘where the symbols Dj (j =1, ... 6) stand for the following operators

- e

T S
Dl = y az 2 ay 1 (llo)
- J 3
D2:z-a—£—x§'z—, (111)
R
D = x 3y Y 3% ° (112)
- 3 3
Dq:z—a'z‘+y3;, (113)
De = x 2 +z —
5 = ax 32 b (114)
- 3.
D6 = X 3% + y ay s (115)
and where
] )
~ BWO 3V0
1] 4
_ 8u0 Bwo
"oz T ox (117
vy du!
=z — o —0
denote the components of vorticity of the deformation vector.
As the next step of our analysis, let us integrate both sides of
the equations (92) - (94) over the entire mass of our configuration
with respect to the mass element
dm = pdV = pdxdydz. (119)

If, as usual,
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A- f(y2 + 22)dm, (120)
B = f(x2 + z2)dnm, (121)
C = f(x2 + y2)dm - (122)

denote the moments of inertia of our configuration with respect to the

axes x, y, z; and

(123)
=/xzdm, (124)
F =/xydm (125)

stand for the respective products of inertia, the mass integrals of the
equations (92) -~ (94) combined with (89) - (91)  wi11 assume the

forms

o 4+ - - 2 _ 2y _ et
wa (C - B) wywz D(wy ouz) E(wz + wxwy)
- F(lw - wxwz)
1 \J - 1 - ]
+ ZwX/EyVO + zwo)dm Zwyfyuodm 2wzfzu0dm

+/D1PdV —]Dlem = /{z(\})(') - y(_&)(')}dm +/p{y3f - zG ldav,  (126)

G - - - - 2 .2
Bwy + (A - Q) w W, D(ouz wxwy) E(wz u)x)
\...‘F(wx + myw‘z)
' ' - ' - t
+ 2wyf(xu0 + zwo)dm Zwazvodm Zwaxvodm

+fD2PdV - _/Dzﬂdm =[{X(V'J)6 - z(ﬁ)(')}dm +fp{zg - xIf}av, (127)

and

' 1 _ ' _ '
+ szﬁyvo + xuo)dm Zmewadm 2wyfyw0dm

+ fD3PdV - [D3Qdm = ﬁy(ﬁ)é - x(\'l)(')}dm +fp{xg - yg}dV. (128)
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The preceding three equations represent the exact form of the
generalized Eulerian equations governing the precession and nutation of
self—gravitating:configuratiéns whiéh’céﬁéi;t of érviéégu;‘fiuid. wfﬁé§rh
constitute a system of three ordigary differential equations for wx,y,z
considered as functions of the time t alone. If the body in question
were rigid (non-deformable)--or, if deformable, it were subject to no
time-dependent deformation--all three velocity components u', v', w'
relative to the rotating frame of reference (and thus, by (60) ,

ué, vy, w)) would be identically zero. In such a case, equations

{126) - (128) would reduce to their more familiar form

>
1S
+

- - 2 32y - Nt wow
(c B)wywz D(wy wz) E(o, < y)

PGy - w,u) +[D1Pdv - fDlﬂbdm = fDlﬂldm’ (129)

- - h _ 2 _ 2
By + (A C)wxwz D(wz wxwy) E(wz wx)

F((:)X + wywz) + szPdV - szﬂodm = /Dledm, (130)

and

Ca_ + (B - A)wxmy - D(my + mxwz) - E(mx - wywz)

F(wi - m}%) +fD3Pdv —/D390dm =]D3ﬂldm, | (131)

where we have decomposed the total gravitational potential
=8 + 5 (132)

into its part arising from the mass of the respective body () and

that arising from external disturbing forces (Q;) if any.

In the case of a rigid body, the existence of hydrostatic equilibrium

requires that

/D.Pdv - fn.godm (133)
1 1
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exactly for 1 =1, 2, 3. If, moreover, we choose our system of
inertial axes =xyz to coincide with the principal axes of inertia of
our configuration, it can be shown that all three moments of inertia

(123) - (125) zan be made to vanish; and for

D=E=F=0 (134)

our equations  (129) - (131) will reduce further to

wa + (C - B)wywz = Dlgldm’
B&y + (A - C)wxwz = DyQ;dm, (135)
sz + (B - A)wxwy = D3Q;dm,

which is the familiar form of the Eulerian equations for the precession

of rigid bodies.

« If, however, the body in question were fluid and subject to dis-
tortion by external forces—-though not necessarily (like equilibrium
tides) fluctuating in time--equations (135) would cease to be exact to
the extené to whicé equations (133) need no longer hold true. The reader
may note that as long as the functions P(r) and Qq(r) are purely
radial (as they'would be in the absence of any distortion) operation with
Di (i =1, 2, 3) will annihilate them completely; so that equations (133)
continue to be fulfilled identically. The same argument discloses,
however, that for fluid bodies, equations (133) may become inequalities
to the extent brought about by distortion; and--to this extent--the Eulerian

differential equations for the precession and nutation of rigid and fluid

bodies may be different even if the form of the fluid does not vary with
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the time.

If, however, this latter condition is not fulfilled--such as, for
instance, in the case when the period of axial rotation of the flwvid
body differs from that of the revolution of an éxternal attracting mass
producing dynamical tides on the rotating fluid--the velocity components
uy, vy, Wy will emerge to give rise to supplementary terms in the
equations (126) - (128) which can be classified in two groups. Those
on.the left-hand sides of the respective equations are factored by the
angular velocity components Wes Wy W) which play the role of dependent
variables of our problem. However, their coefficients are not constants
(l1ike A, B, C; D, E, F), but functions of the time. The second group
of new terms arising on the right-hand sides of the same equations are
independent of w ,Y.2 and render our system non-homogeneous. The first
mass~integral on the right-hand sides of equations (126) - (128) arises
from the accelerations (1), (6)6, (w), experienced by tﬁe body subject
to deformation--irrespective of whether the flow due to this motion is
inviscid or viscous; while the second group of volume integrals (the
integrands 6f which are given by equations (126) - (128) represent

the effects of viscosity proper; and if the latter is large, these may

be predominant.
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