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ABSTRACT

In two preceding reports of this series (Boeing Documents D1-82-0611
and D1-82-0618, hereafter referred to as Reports II and III, respectively)
differential equations have been set up which govern the deformations of
self-gravitating globes of viscous fluids in an external field of force,
and solved in a closed form for the case of an incompressible homogeneous
liquid. The aim of the present report will be to derive the explicit form
of equivalent equations which govern the deformations of self-gravitating
elastic bodies of non-uniform internal temperature, whose dynamical behavior

is characterized by variable Lamé parameters X and .

Special respect will be paid to small deformations (or oscillations)
about the state of hydrostatic equilibrium, characterized by spheroidal or
toroidal symmetry. The former possess a counterpart in the case of fluidity
treated previously in Reports II and I1I. Analytical similarities as well
as differences between these two cases will be pointed out (inviscid fluid
case obtaining as a limit when u = 0 ); and closed solutions constructed
for homogeneous configurations distorted by rotational or tidal forces.

On the other hand, toroidal deformations are characteristic of elastic solids

alone, and possess no counterpart in our previous work.

The sections as well as equations of the present report will be num-
bered consecutively to those of Reports I - III (Boeing Documents D1-82-590,

D1-82-611, and D1-82-618.




X1V. DEFORMATION OF SELF-GRAVITATING ELEASTIC SOLIDS IN EXTERNAL FIELD

OF FORCE: FUNDAMENTAL EQUATIONS

Consider a self-gravitating solid configuration of density p, the
elastic properties which are characterized by the Lamé parameters X and
U, and the coefficient of volume thermal expansion o - none of which
need to be constant. As is well known, the nine stress components ik
of such a body at a temperature T can be expressed in polar coordinates

r, €, ¢, (cf. e.g., Boley and Weimer, 1960)
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where U, Ugs u¢ are the components of the displacement vector u, and
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If so, the equations governing the deformation of self-gravitating

elastic bodies, expressed in terms of the stress components Oij (cf., e.g.,

Love, 1927, p. 91), will assume the forms

(14-14)
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where t denotes the time and V, the total potential of forces acting on
our configuration - including the disturbing potential of exterior forces

(if any).




If we insert in (14-14) - (14-16) the expressions (1l4-1) - (14-6)
for the actual stress components in terms of the strains (14-7) - (14-12),

the foregoing equations of motion can be rewritten, more explicitly, as
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are the respective components of curl u, and
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are terms depending on the spatial derivatives of the elastic parameters

a, A and wp (and vanishing identically if all these quantities were constant).

Equations (14-17) - (14-19) together with (14-20) - (14-25) constitute
a simultaneous system of sixth order in the displacement components U, Ugs
u¢ ; but their determination requires a knowledge of elastic parameters a,
X, u as well as of the density p, temperature T, and potential V as

functions of the independent variables. The latter is, however, constrained

to satisfy the Poisson equation

V2 = -4nGo, (14-26)




where G denotes the constant of gravitation; while the distribution
of internal temperature in solid bodies sill be generally governed by

the equation

)

=

pC
v

= div(k grad T) + Q (14-27)

Q

t

of heat conduction, where Cv and « denote the specific heat at comstant
volume and the coefficient of heat conduction (not necessarily constant)
while Q(r,9,¢,t) stands for a function representing the action of internal

heat sources (if any).

Consistent with the basic premises underlying the theory of elasticity,
the left~hand sides of equations (14-17) - (14-19) are linear in the dis-
placement components u_, Ug, and u¢; but this is not necessarily the
case with their right-hand sides. In what follows we shall, however, assume
the displacement to be small enough for their effects on the density p and
the potential V to represent small quantities whose squares and cross-—
products can be ignored -—an assumption which ensures the linearity of the

entire system. Furthermore, let us assume that the mass of our self-gravi-

*
tating configuration is sufficiently large to be in hydrostatic equilibrium

This will be true whenever the forces of self-attraction (which grow pro-
portionally with the mass) will exceed the molecular forces of solid state
which depend on the kind of the material, but not on its total mass). For
self-gravitating globes consisting of silicate materials of density op
this is expected (cf. Wildt, 1963) to occur when their radius exceeds ap-
proximately 580p‘% kms. The Moon (of mean radius of 1738 km and of den-
sity 3.34g/cm3) exceeds this limit by so wide a margin that it should assume
essentially spherical form even if it were (as it may be) solid throughout
its interior; and may deviate from it only to an extent maintained by ex-
ternal forces.



in its undisturbed state, in which it assumes the form of a sphere (the
zero-order gravity being balanced by internal pressure). Moreover, the
equilibrium values of the state parameters a, A, u as well as of the
density p and temperature T can then be regarded as functions of r
only; and under stress can differ from them only by amounts of the order

of magnitude of the displacements. This means that, within the framework

of a linear theory, their equilibrium values may be used whenever multiplied

o> OF u¢.

by u., u
In particular, let po(r) represent the density distribution of our
configuration in its equilibrium (undisturbed) state. If so, the conservation

of mass requires that the difference p - o in density brought about by

stress be expressible as

p-py =0 =- div(ooﬁ) : (14-28)

which (since DO depends on r only) can be rewritten as

apo

' - - — ———— -
p OOA u. 37 e (14-29)

representing the '"equation of continuity" of our present problem, and equi-

valent to equation (5-19) of Report II in fluid mechanics.

Similarly, if VO(r) denotes the gravitational potential of our con-
figuration in its state of equilibrium (giving rise to acceleration balanced

up by hydrostatic pressure), its change under stress can be expressed

V=V +u —, (14-30)




where the increment V' in potential due to deformation (and including
that of the external forces which caused it) must satisfy the differential
equation

oy o= - 4mGp", (14-31)

following from (14-26), in which p' can be inserted from (14-29).

In consequence, the linearized right-hand sides of equation (14-17) -

(14-19) are, therefore, found to assume the forms

3 u av v
0 3 ' 0
pO‘ 2+A3r 3r<v +ur 8r>}’
at
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where the term A(SVO/Br) in the first one of these expressions (but in
that only) represents the increment in gravitational force per unit volume
due to a change of -P.A 1in density on the right-hand side of equation

0

(14-29); it is absent from others because V0 does not depend on the angular
variables. If so, however, it becomes also unnecessary hereafter to charac-
terize the equilibrium density Py and potential V0 by zero subscript;

and these will henceforward be dropped.

Equation (14-29) renders p' a linear and homogeneous function of the

components of displacement; and so will be V', by virtue of (14-31), as



long as the disturbance of the potential arises solely from displacement

of its own mass. In such a case our system of equations for U, Ugs and

uy becomes linear and homogeneous in these variables, and governs free
oscillations of the respective configurations. The same will, however,

not be true if V' contains a component of external force; in such a case
our system of equations becomes nonhomogeneous, and the displacement governed

by it of the nature of forced deformation which may, but need not, be oscil-

latory in nature.

The role of the terms involving the temperature T 1in our equation of
motion remains yet to be specified. If, in conformity with our previous

process of linearization, we express the latter in the form
T = To(r) + T' (r,0,¢3t), (14-32)

where To(r) denotes the steady-state equilibrium temperature and T'(r,8,¢;t)
its changes arising from the deformation (or whatever other cause). The
effects of TO(r) will, in hydrostatic equilibrium, again be balanced up

by the pressure; so that its changes T' alone need to be considered in our
linearized equations of motion. These changes may be invoked by an expan-
sion or contraction of our solid (in which case they can be expressed in

terms of the respective components of displacement); or be due to the in-
ternal heat sources represented in equation (14-27) by the Q-term on its
right-hand side; or again by secular cooling by the escape of internal heat

into space (governed by the same equation but without the Q-term).




In the latter two cases the function T'(r,6,¢;t) can be independent
of the displacement. If, on the other hand, the stresses cij inside
our configuration perform work in the course of each displacement which
is convertible into heat, equation (14-27) ~ representing as it does the
conservation of energy - must take this into account. If unrestricted
expansion were possible at constant pressure, equation (14-27) would con-
tinue to hold good as it stands, provided only that the coefficient CV
on its left-hand side were replaced by CB, the specific heat at constant
pressure (cf. Carslaw and Jaeger, 1959; p. 13). If, however, the displace~-
ment is not piezotropic (as will generally be the case), additional terms
will appear in the energy equation (cf. Jeffreys, 1930; Biot, 1959 ), which
in the present case will be equivalent (cf. e.g., Nowacki, 1962; pp. 38 ff)

to a source function

- +-_§; W (aTy) div (14-33)

Q

where the dot over K denotes the differentiation of the displacement vector
with respect to the time*. In such a case, the energy and momentim equations
of the underlying thermoelastic problem would be coupled through the term
(14-33), and thus constitute a simultaneous system which -~ in the absence
of external forces - would be homogeneous in its dependent variables; and
in the next section we shall proceed to reduce it to a form more amenable

to actual solution, subject to appropriate boundary conditionms.

*
It may also be noted that, by virtue of the thermo-dynamical definition

of the respective parameters, (A +'§ u)aTO = pCVCy-l)/a, where vy stands

for the ratio of specific heats CE/CV.
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Some of the boundary conditions which such solutions must obey are
trivially simple. Thus we shall require that, at the center of our con-

figuration (r = 0), the displacements must be zero - i.e., that
ur(O) = ue(O) = u¢(0) = 0. (14-34)

Next, we require the vanishing, at the outer boundary r = a, of the

radial components of the stress tensor

o (a) = ore(a) =o_

rr (a) = 0. (14-35)

¢

In addition, we have to ensure that, for self-gravitating configurations,
the gravitational potential and its normal component (i.e., acceleration)
remain continuous at r = a for any displacement; but an explicit formu-
lation of the constraint which this imposes on our solution is more involved,

and will be postponed for the next section.
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XV. SPHEROIDAL DEFORMATIONS

In the preceding section of this report we have reduced the linearized
equations of motion which govern the deformation of a self-gravitating elas-

tic globe from a state of hydrostatic equilibrium to the form of a simultaneous

system
W
8A _ __2u 5 PO )
O+ 2w) ~ein 5 |30 (w¢ sin 6) - TS (15-1)
Bzu
2y o 2Ly £ r V3 (o av
R L i 3t T (V Ty ar) ’
A4+ 2u 08 _2u a“’r__@_ o i
r 36 rsine[a¢ 5y (U, sin ©) (15-2)
32u
_ 32 + 2y o 13 fon 3V
3r ces I T L2 T ae \V T Y )|

20 :
At 22 2 [ar (xdy) - r] iy (15-3)

3r sin 6 O 33

2
la“ 1 e( 3V l
+G=op — —
l 8t2 r sin 6 3¢ or i

where &r, Wy w¢ continue to be given in terms of the displacement compo-
nents u_, Ug, u¢ by means of equations (14-20) - (14-22); A by (14-13);
the function &, G, J by (14-23) - (14-25); and the potentials V, V' are

to be obtained by a solution of the equations (14-26) and (14-31), respectively;

while T' follows from (14-27).




~12-

Let us assume now - similarly as in Section VI of Report II of this
series - that the deformations of our self-gravitating configuration from
the state of hydrostatic equilibrium are spheroidal - an assumption which

constrains the displacement components UL, Ug, and u to be expressible

¢

in the form

u_(r,8,05t) = u(r,tnj%(e,q,), (15-4)

]
<
—~
~
(el
~

ue(r,e,d);t) 39 ° (15—5)

|2

u (r399¢;t)

o T sin o 3¢ ° (15-0)

where the Y§(6,¢)'s are surface harmonics of index i and order j,
which satisfy the differential equation

2
1l 97Y + 1

sinze 3¢2 sin 6

) . Y ., _
5% (sin 6 Y ) + j(5+1) Y = 0, (15-7)
and u(r,t), v(r,t) are new functions of r and t only which remain to
be determined.

If, as in Section VI, we abbreviate

2
J? ™ (r’u) - j(j+l)‘% =y (15-8)

and

13 (rv) _.% =z, (15-9)
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it follows by insertion of (15-8)

(15-9) in (14-13) again that
i
b=y, (15-10)

while the curl components (14-20)

(14-22) reduce likewise to

o, = 0’ (15-11)
I
S = " Tein s 50 (15-12)
, Y
w¢ = + E'—EEL . (15-13)
Let us, furthermore, assume that the changes in temperature and the

potential of the strained body are expansible in the form

T'(r,0,¢3t) = z :Ti .(r,t:)Yi.(e,cb) (15-14)
i3 ]
and
Y (e,6,050 = )R, SO (0,0, (15-15)
L3 -

An insertion of this latter expansion together with (14-29) in (14-31) dis-

closes that the function R(r,t) must satisfy the differential equation

2 9
AR 2ZaR ey B uoef (15-16)
) 7t T 5r 33+ r 4“GQ{Y + b dr

r

the solution of which can be expressed (cf. equation 7-17 of Report II) in

the integral form
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sre| 1 ¥ 3p\_j+2
RJ T2+ l| j+1 J/.<py tuy ) d
0
+ rJf (py +u _a_g>rl-3 drj + ¢y rJ (15-17)
r
or, on partial integration,
P j+2

- é_&l___ 9
Ry =27+ 1) j+l/p[8r (ur
r 0

+eg rJ, (15-18)

when the particular integral (in curly brackets) represents the perturbation
in potential arising from the distortion of our configuration, and the com-
plementary function Ci,jrj where the c's are constants (or arbitrary func-
tions of the time) specifies the force (of rotational or tidal origin) which
is responsible for distortion. Moreover, if the density distribution p is
such that o(r) =0 for r > a (where a denotes the radius of our config-

uration in its equilibrium state) the infinite upper limit of integration on

the right-hand side of (15-17) or (15-18) can be replaced by a.

Furthermore, since in the undistorted state

r a
v =& "; & / or2dr + 471G fpr dr, (15-19)
0 r
it follows that
v 4 GuY% r 2 i
u — = - —_— pr dr = - guY. (15"20)
r dr 2 j
r %
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where

4 2
g = —%; or-dr (15-21)
%

denotes the gravitational acceleration, it follows that

' CA'A T i -
V' o+ ur(ar 41G R, (r,£)Y,(8,9), (15-22)
where
r T
- _u 2 R 1 ) i+2 i+2
Rj —rz or~ dr 2341 W'j+lfp[—3r (ur’™%) - yrd ]dr
0 G
(N R 1-3 gt
+ r fp[va—l: (ur™ ¥) - yr -]dr - Tina (15-23)

r

Lastly, it follows likewise from (15-10) and (15-19) that
oV 4nGy 2 1
Aa—r=— > fpr dr=—ngj . (15-24)
T
0

If we insert now all the foregoing results in equation (15-1) we find

the latter to reduce to

dy . ]3A du\du
(A + 2w ar T ar+goy+2(ar or
Uz 3 2 32‘-1 R
+ 3G+ F - A+ 3 wer = pl;? + 446G =P (15-25)

while equations (15-2) and (15-3) assume the identical form

9 ) 2K
(A + 20y + 5 (urz) + 2(u-v) e "
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2

2
-+ 3 pat = p‘r 3—‘2’ + 47GRY. (15-26)

at

The foregoing equations (15-25) and (15-26) represent the fundamental
set of equations governing spheroidal oscillations of self-gravitating
elastic globes; but they are not sufficiently explicit inasmuch as they
involve functions u and v which specify displacement not only through
their derivatives, but also behind the integral sign in the expression
(15-23) for R; and to remove this an elimination of R between
(15-25) and (15-26) appears desirable. In order to do so we can
proceed similarly as in Section VI of Report II. First, divide both sides
of equation (15-26) by p, differentiate with respect to r, and then
eliminate 3R/dr between the outcome of this operation and equation (15-25):

the result assumes the form

2

9 1 3p
o 2(r2)+goy+par

d
(A + 21y + 77 (urz)
ot g

+ 2(u-v) %%-— @N +'% u)arl = (15-27)

arz T

) I o® 1+
2

9 frioy OB _ duydu
(urz) + 2 Br[(u v) 8r] + [y Srlar ’

or, on insertion for y and z from (15-8) and (15-9),

3 2 2

P AY 4 (3, 4 oo )3y o B7M 2 3u _ J(4+Du)dv
WL T3 H ar) 2t T2t RN E
5T ar or ror r r

2 . . 2

(3w, 2004 s 30D\ . 3

2 r dr 2 L)

or r ar
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(et ot ()

ar T 3t r r
3y 1 2 By by
- \ur 3 2 + r dr (™) ar R or

+ 42\__"‘_2_&] +1(1+1)(A+2u)]
8 r

du  2u 34DV

or ” - (15-28)

2 129
- (A += 3 u)aT}(B'S%) + gp

In order to obtain the second independent relation between u(r,t) and
v(r,t), 1let us note that the function R,(r,t) as defined by equation
J

(15-23) satisfies the differential equation

2 2
3°R L 23R _ I(IHD) o o lyf3u 3| 2 R
T e 2 p{Z(ar ) + { G L), (15-29)
or T
where
r
= 2
p='3§for dr (15-30)
T o
denotes the mean density of a sphere of radius r. Let us differentiate

2
now (15-25) with respect to r and solve the outcome for BZR/Br which
we insert in (15-19). 1If, moreover, we insert similarly for O9R/9r and
R from (15-25) and (15-26) as they stand, equation (15-29) can be reduced

to the form

N

2 . /s 2
()\_*_zu)____a +__8__M y_p_a__'[
2 T or 2 2

ar T ot



4+ QE_[Bzu 10+ (u_v)]
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+l3"—l§’; [0+ 23] + 252 - 5] 3+ yeni2

=gp

p dr or
3 2

or, on insertion for y and z from (15-8) and (15-9),

3
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8r3

2)2
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2
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et 281Gt 2
|32+r8r 7 (T3 war
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at
3
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The foregoing pairs of equations (15~27) and (15-32) or (15-28) and
(15-32) constitute each a simultaneous system of sixth order for u and
v (their reduction to a single sixth-order equation for either u or v
is possible, but too cumbersome to be really worth while). Their solution
is subject to the boundary conditions (14-34) - (14-35) which, in the case
of spheroidal symmetry characterized by (15-4) - (15-6) require that, at
the center,

u(0,t) = (15-33)

I
o
-

v(0,t) (15-34)

[]
o
.e

while, on the boundary, the vanishing of the spheroidal stress components



=20~

- I 3u 2 i
Oy lky + 2p - ( + 3 wart Yj (15-35)
v v u BY;
T.g =M (3‘; -7 +—r'\) 35 » (15-36)
A v u 1 BY;
0rd) - H (3; T +.;) sin 6 3¢ (15-37)
reduces to the additional two conditions
du 2
Ay + 2u ryde (2 +3 wat(a,t) (15-38)
and
v v, u_ -
" a + - 0 (15-39)
for r = a. If the temperature over the free surface could be regarded as

constant, the right-hand side of (15-38) would vanish, and both (15-38) and

(15-39) would then be homogeneous in the components of displacement.

The form boundary conditions (15-33) - (15-34) and (15-38) - (15-39)
are sufficient to specify particular solutions of the fourth-order system of
differential equations (15-25) - (15-26) for a given function R. In actual
fact, however, R itself is a function of the displacement components u
and v as specified by equation (15-23). A single differention of the pro-

j+1
duct rJ R reveals, however, that

3R . 4+l -1 2% 13 1-4 1-
'é';+‘1';—R='r fD['é‘;(ur J)-Yrjdr

r

4LTG ci,j rj . (15-40)
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which on insertion for OR/dr and R on the left-hand side from (15-35)-

(15-36) for r = a assumes the form

2
- 9 . S -T2
Py 5 U + (j+l)v =3r + " (A += 3 wot
3t
. .
rora S By L L TG
r Y or
'3__ 4 At
la Tee Yt 25, 'ar r (u")=
= gp du =1, e (25+1)p, ¢ rj“l (15-41)
1|]or T 1 i,j ’

where Py denotes the surface density of our configuration (which, unlike

for fluids, need not be zero).

Next, let us ascertain the surface values of other quantities involved
in equation (15-41). Since, by (15-38), the boundary value of y can be

expressed as

y=—2%(g—:‘> + <l+%‘}§->on, (15-42)

a solution of this latter equation together with (15-8) (which is valid
everywhere including the boundary) for y and 23du/d9r discloses that, at

r = a,

(A + 2p)y = —;‘J—[zu—J(Jﬂ)v] + (A +—- W at (15-43)
and

G+ 20 B2 = - 2203 @4)v] + G+ 5 war (15-44)
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On the other hand, from a solution of (15-39) valid over the same boundary

with (15-9) for 2z and 29dv/3dr leads to

rz = 2(v-u) (15-45)
and

R 46

or r ° (15-46)

If we differentiate now the expressions (15-8) and (15-9) for y and z

with respect to r and subsequently insert from (15-44) and (15-46) we find

that at r = a,

2
28, G

ar 3r2 .
Y2 IA[" 2
- F(G+)v - 2u]l + (A + §'u)arr (15-47)
™ (A+2p) l
and
) Bzv 1
™ (rz) = r arz = TOFID buu + [§GHDX - 20 + 2W) v
2
+ (A +'§ u)arrl. (15-48)

If we insert now the foregoing expressions (15-43) - (15-48) in (15-41), this

latter equation can be reduced to a requirement that, at the boundary r = a,

32u 2 2

5 + (G+Du T - -a—{u+(j+1)v}
or ar at” -

Q

(A + 2u) 7 " Py

3]

iy A 4 A4y
1A -2 T+ - (3-3)gp, t
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, 2 - gl
A2 |9r\u r r

.2 .
- (e (RO 2D

2
g T 21(.*. i AN I 4
A+2u ar\u r ( )

2
A+ S
S (3 2 2
(A + 2u) ar<>\+2u>—r(>‘+3“)

Y j-1 -
ot (ZJ+1)plci,j r . (15-49)

I1f, moreover, we remember that, quite generally,

2
b= pc, (15-50)

2
X +2y = pcy (15-51)

where cy and . denote the velocities of propagation of the longitudinal
and transversal waves in elastic solids, while
\ + 2 2 4 ; (15-52)
T U= c, —m ¢ = 15-52
3" p\!@ 3t} K * /
stands for their compression modulus, the foregoing boundary condition

(15-49) can be rewritten alternatively as

2 2 2
2p2 iUy (j+1)02r2 By 22 fu + (G+D)v}
2 2 t 2 2

or ar at

F 1G4 (G-2)e) = 23 (4)c; - (-Dex
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C4 c2
L], 3 /{2 .
+ 4 CZ [r - < 2> - (J+l)]
2 ct

. 2. .
(3+D) {2(] +23—l)ci - ZJCi + jgr

c4 c2 CZ

. _t d 2 , t
~ [Zr °r <——2> =+ (J+l)<2 - >‘v
) “t €2

+ 3
2
)4 2 3 fe\N_,2 8 2
= ‘ 3 % ¥ oy < 2> 2eg + 3 ¢
C
2
2
4 St 2 3
+ - 3';5 (3+1)ct at - (2J+1)ci,j . (15-53)
L

The foregoing equations (15-49) or (15-53) valid at r = a ensure
that the gravitational potential as well as acceleration remain continuous
across the boundary of our distorted configuration, and represent the fifth
boundary condition of our problem. The sixth and last one obtains by in-
vestigating the behavior of the function R at the origin in the following
manner. Let both sides of equation (15-23) defining R be divided by rj,

and differentiated with respect to r : the outcome discloses that

g [ 2 G

9r - 47G

r .
+-—§%Eq/.p[§%'(urj+2) - yrj+2]dr, (15-54)
r
0

which for r = 0 reduces to

R(0,t) = O, (15-55)
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a result for which the previous conditions (15-33) and (15-34) are suf-
ficient (though not necessary; since in the neighborhood of the origin

the gravitational acceleration g(r) varies as r and tends to zero

in its own right; the only conditions necessary for the validity of (15-55)

are that u and v be bounded at the origin).

Since, moreover, as r > 0,

. u _ or . ¥ _ 3V _
lim ” 5t and lim - . (15-56)
by virtue of (15-33) and (15-34), so that
. _ 29U _ Lo...y OV vE_c7y
limy = 3 57 = 303+ 55 (15-57)

r+0

equations (15-26) together with (15-56) - (15-57) reveal that, at the origin,
G+ 50 22+ [2u - 3G+ Qa2
ar or

= () +% Wat(0,t); (15-58)

or, alternately,

2 2, du 2 ... 2Yav
(3c2 - Ct) vl [2(:t J(J+1)CQI Y
= (ci -'% ci)aT(O,t), (15-59)

which become again homogeneous in u and v if the central temperature

of our configuration is constrained to remain constant.

Equations (15-33) - (15-34), (15-38) - (15-39), together with (15-59)

or (15-53) and (15-58) or (15-59) constitute six boundary conditions requisite
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for a complete specification of the desired solutions of the sixth-order
system of fundamental equations (15-27) and (15-31) or (15-28) and (15-32)
of our problem; the conditions (15-33) - (15-34) and (15-58) or (15-59)
being valid at the center, and (15-38) - (15-39) and (15-49) or (15-53)

at the boundary of our configuration. Before we proceed with the construc-
tion of the requisite particular solutions, however, we propose to estab-
lish first the explicit form of the equivalent set of equations which
govern the deformations of self-gravitating elastic globes characterized
by toroidal rather than spheroidal symmetry; and to this task we shall

address ourselves in the next section of this report.
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XVI. TOROIDAL DEFORMATIONS

Having completed the reduction of the fundamental equations of section
XIV governing the deformation of self-gravitating elastic globes to a form
appropriate for the spheroidal symmetry defined by equations (15-4) - (15-6),
let us turn our attention to another particular case of interest, arising if
the deformation of our globe possesses toroidal symmetry - such as will ob-

>
tain if the three components of the displacement vector u can be represented

by
u_ = 0 (16-1)
BYi
o = r.t) i (16-2)
& sin 8 3¢ °’
oyt
u¢ = - v(r,t) 7&% . (16-3)

in place of (15-4) - (15-6), when the Y;(9,¢)'s continue to be surface

harmonics satisfying equation (15-7).

If so, an insertion of (16-1) - (16-3) in (14~13) reveals that, in the

present case,
A=0 ; (16-4)

which together with u, = 0 renders, by (14-29) the perturbation p' in
density - and, therefore, by (14-31) in potential V' - identically zero.
The torsional motion characterized by velocity components of the form (16-1)
- (16-3) does not, therefore, disturb the gravitational potential of our

globe - a fact which will far-reachingly simplify the analysis.

As the reader can easily verify, the assumed form of the velocity com-

ponents (16-1) - (16-3) reduces the components (14-20) - (14-22) of the curl
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; to the form

20 = AG+Dv Y%, (16-5)
r r 3

- v \ BY%

20 = 13 T T _a'el ’ (16-6)
- v L ov| 1 aYlj

20 = Yar YT {Sin e 39 - (16-7)

The terms ¢, d, and G as defined by (14-13) - (14-25) are (for A =0)
obviously independent of ); but they can be made to vary as the requisite

single harmonic only if u 1is independent of the angular variables; in which

case
£ =0,
o f{8x _x)/_1 8Y\ oy -
g = <8r r)(sin 6 3¢) dr (16-9)
v v\(9 )
G=- (3?'?)(36)'3‘%' (16-10)

Lastly, a separation of the physical and angular variables in (15-1) - (15-3)

with the aid of (16-1) - (16-3) becomes possible only provided that
2
grad{(A +~§ u)ar} =0 (16-11)

If so, however, equation (15-1) becomes identically zero; while (15-2)
and (15-3) reduce to identical second-order differential equations for v

of the form

v _\_7_' (16-12)

subject again to the boundary conditions (14-34) and (14-35) which, in the

present case, reduce to the requirements that, at the origin,

v(0,t) = 0 ; (16-13)
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while, at the outer boundary r = a,

(16-14)

An inspection of the foregoing results discloses that - unlike the case
of spheroidal deformation of section XV whose analytical formulation consti-
tutes a differential problem of sixth order - the toroidal deformations
(subject to additional restricting condition represented by equation (16-11))
reduce to a problem of second order only. This reduction goes back partly to
the fact that only one radial function v(r,t) is found sufficient to des-
cribe toroidal deformations - in place of two such functions u(r,t) and

v(r,t) in the spheroidal case - and partly to the fact that the toroidal

deformations do not perturb the gravitational potential of the respective body.

It may be added that the fundamental equation (16-12) of the toroidal
case was first derived by Alterman, Jarosch and Pekeris (1959) in connection
with their investigation of free toroidal oscillations of the Earth; while
for its subsequent applications to the Moon cf. Takeuchi, Saito, and Kobayashi

(1961) or Carr and Kovach (1962).
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XVII. SPHEROIDAL DEFORMATIONS: PARTICULAR CASES

The sixth-order system (15-1) - (15-3) of fundamental equations governing
spheroidal deformations of self-gravitating globes of arbitrary equilibrium
structure is too complicated to admit of any but numerical solutions in an
unrestricted case; and such solutions can be constructed by standard methods
for any given functions a(r), A(r), w(r) and p(r) or (r). Certain
particular cases exist, however, in which our problem simplifies sufficiently
to admit of analytic solutions expansible in series of well-known elementary
or transcendental functions. The aim of the present section will be to point
out such cases and to construct their appropriate solutions - with particular
attention to the similarities obtaining between our present treatment of

elastic solids and viscous fluids investigated in earlier reports of this series.

1. Radial Deformations

As the first instance which we propose to treat in some detail, consider
the case of a purely radial deformation (i.e., such as represented by an ex-

pansion or contraction of an elastic solid globe) in which, by definition,

=0 and v(r,t) =0, (17-1)
so that, by (15-8) and (15-9),

1 29 2 _ u _
y = rz e (r"u) and z=-7. (17-2)

Moreover, in such a case equation (15-23) governing the potential disturbance

reduces to

r a
c
R = LZ [przdr + fpu dr - ——'—42(;0 (17-3)
r O Y
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so that

du _ 2u
ar r

r
2
j.pr dr = -5 (17-4)
0

AT

If so,

equations (15-2) - (15-3) or (15-26) become identically zero, while (15-25)

will reduce to a second-order differential equation for wu(r,t) of the form
B 1 2 o, |1 2
G+ 2w 57 [rz 3r (T “)l + [Br + g"]rz 5r (T W

2
du du _ 37y du _ __2‘1] el 2
+ 2 =p 2 terlsr ~ T ] o  + 3 wat (17-5)

or, more explicitly,

2
9w 1 3 1[2.. , ]_3& 21, A2u | 9A]
(A + 2w) > + 2 Brir (A+21) 5t + r{zgp + Py u

or r

2
d
- U + =) + g-u)on(r,t). (17-6)

at2 or 3

The boundary conditions of our present problem derive from (15-33) and

(15-38), which in view (17-2) reduce to

u(0,t) =0 (17-7)
at the center, and
du , 2\u _ 2 _
(n + ZU)Br +'—;— = (A + 3 wat(a,t) (17-8)

on the bounding surface r = a.

If the motion in question were of oscillatory nature which, for small

amplitudes, becomes harmonic with the frequency v, then by setting



-32-

82 2
T = (17-9)
Jat

we can regard (17-6) as an ordinary differential equation for u as a

function of r, and solve it as such for given values of o, A, U, p and T.

Consider, on the other hand, the steady state case in which none of the
quantities involved in equation (17-6) depend on the time. If, moreover,
the parameters o, A, w as well as p can be regarded as constant (i.e.,
our configuration regarded as a homogeneous elastic solid non—uniformly

heated within), equation (17-6) will again reduce to

A |1 3 2| _ |30+ 2u| 8t 4eolu
ar \rz ar (r u)l 3)\ + 6].1‘ aa_r - )\+2U}r ’ (17_10)

where the first term on the right-hand side represents the effects of thermal
expansion or contraction; the second, those of compression due to self-
attraction.

The foregoing equations can, moreover, be reduced to more symmetrical

forms if we introduce a new variable

- -
E,t_r’ (1711)

and replace the Lamé constants A and u by the coefficient B of isothermal
compression (i.e., reciprocal of the bulk modulus k introduced through equa-
tion (15-52)) and the Poisson's ratio ¢ of transverse compression to longi-
tudinal expansion, related with X and u by means of the equations

0 = Sy (17-12)
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and

If we do so and remember that, for homogeneous configurations,
4
g =3 nGor,
our equation (17-10) can be alternatively rewritten as

2
978 438 _1lto jod1_ 16 2,.1.
ar2+r3r 3(1=0) |r or _ 3 "eP BEy;

and its associated boundary condition (17-8) for r = a becomes

(1-0) 1 -g—% + (140)E = -%-(l+o)r(a).

(17-13)

(17-14)

(17-15)

(17-16)

Equations (17-15) - (17-16) were previously used by the present writer

(cf. Kopal, 1962, 1963) to study the secular thermal expansion of the Moon

radioactively heated within, as well as its contraction due to self-compres-—

sion; but the more general equation (17-6) has not yet been used to this end.
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2. Incompressible Configurations

The aim of the present section will be to study the case of spheroidal

deformations of incompressible elastic globes, characterized by the condition

A=y=0, (17-17)

which, by (15-8) and (15-9), implies that

/. v 1l 29 2
j(3+D) T ?—a; (ru) (17-18)
and
. 1L 8 /2 38\ _ iy
j(j+)z = ‘ 5 8r<r 3r> 5 (ru) ; (17-19)
T r
or, by setting
u = Jilgll w (17-20)
r
and thus, by (17-18),
1 dw
vETaT (17-21)

(17-22)

Since, moreover, incompressible configurations cannot be deformed radially,

it follows that, in our present case,

j > 0. (17-23)
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Moreover, imcompressibility implies that the velocity <y of pro-

pagation of the longitudinal waves in our solid be infinite - which, by

(15-51), implies that the Lamé parameter

A= o, (17-24)

but in such a way that
0 < )\y N (17-25)

and that, furthermore,
0 <u <o, (17-26)

which by (17-12) renders the Poisson ratio

1 .
c =5 (17-27)

In the limiting case of u = < equation (17-12) permits ¢ to assume any
1
value constrained by 0 < o <5 ; and for uw =0 (i.e., zero rigidity) we

obtain the case of incompressible liquid. All these will be treated in turn.

Let us first take up the harmonic oscillations of a heterogeneous globe

of incompressible liquid, for which a =u =0 and A ©, Since, moreover,
y = 0 (though Ay remain finite), the first fundamental equation (15-27) for

harmonic motion with a frequency Vv introduced by (17-9) will reduce to
Ay %o _ 2., . (17-28)

while the second fundamental equation (15-28) similarly reduces to

i+<_2___1_§g B _ 1G]
arz r o ar> ar 2 yi=

r
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4 P <3V utv du u du
S — L MTV) (e AT O
3 ™P lp[3(3+1) T ) 4(ar r)] + 6°ar‘ (17-29)

Eliminating Ay between (17-28) and (17-29), and inserting for v in terms

of u by means of (17-18), we obtain

2
2 2% (2 _1apy2 _ 10D | o%re
v 2 + r p dr | d9r - 2 3 =
o I I

2
-2 ‘rz 2L , (17-30)

p
Z [ 28 (s
2 [r E)r+£] - 3G+DE

where rz 1is expressible in terms of u by (17-19) and where, in accordance

with (17-11), £ continues to stand for the ratio u/r.

Since rz as given by (17-19) is of second order in wu, the foregoing
equation (17-30) constitutes a differential equation for u of fourth order,
which is generally solvable only by quadratures. However, in certain limiting
cases it can be reduced to one of second order. Thus, in the equilibrium case

(when v =0 ), it can be satisfied only if

2 2
rz i;—§+ 6~ lr §-§—+ gl - j(j+He = 0, (17-31)
arZ p or

which represents the well-known Clairaut equation of hydrostatic equilibrium
(cf.,e.g., Kopal, 1960); or, for homogeneous configurations ( p = constant),

oscillating with a frequency v2 > 0 it requires that

2 .
rz =2 ; S AGHD G L (17-32)
2
3r Y

by (17-22).
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The particular solution of (17-32) which remains finite at the origin is of

the form
j+1
w(r) = er . (17-33)
so that, by (17-20) and (17-21),
 afs j-1 s j-1
u = j(j+l)kr and v = (j+l)kr’ , (17-34)

where k denotes an arbitrary constant. Moreover, since for homogeneous
configurations p/p = 1, the expression £ = u/r = j(j+1)krj—2 satisfies
also Clairaut's equation (17-31). Both sides of (17-30) vanish on insertion
from (17-34) which represent, therefore, the solutions of the complete equation

(17-30) for homogeneous configurations.

In order to determine the frequency v of the respective oscillations,
let us return to our fundamental equation (15-26) in which, for homogeneous

configurations, R as defined by (15-23) can be integrated to yield

]
|
ko]
a}
[=f
~
]
~
I

R(1)

2 c, . .
= 2 .l g 'l _l) k - ._].‘_LJ- prJ
3(2§ + 1) 7] 4nGp J (17-35)

by the first one of equatioms (17-34). Let us, moreover, particularize now

equation (15-26) for r = O. Since, in accordance with the boundary condition
(15-38),

Ay =0 at r = a, (17-36)
and

v(a) = (j+1)1<jaj'l (17-37)
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by the second one of (17-34), on insertion from (17-34) - (17-37) in (15-26)

the latter can be reduced to the algebraic form

2 2 c
. v _24i(7-D,  TiLg -
(3+1)kj <;nG;> 3 2§+l 5 4mGp (17-38)

In the absence of a disturbing force (i.e., when cs 3 =0), the
’

foregoing equation yields for the frequency of free harmonic osicllations
of self-gravitating globes of incompressible liquids the well~known result

2
v 41(4-1)
2mGp  3(23+1) ° (17-39)

obtained first by Kelvin (1863) and re-derived subsequently by us, by a
different method, in Report III (equation 13-16) of this series. If, on
the other hand, v =0 in (17-38) - corresponding to the case of hydro-

static equilibrium - equation (17-38) leads to

_3(24+D) Si.d
(j+1)kj = 250-D) Tree (17-40)

and, by (17-34),

_ 323+ (Si,4) -1
= T2(-1) \%nGo T s (17-41)
_3@i (S1,4) 3-1 -
V= 3G-D \ameo /T (17-42)
where the constants c, are specified by the nature of the external forces

i,]

acting on our configuration.

As the next case to be considered in the present section, let us relax
the condition u = 0 and regard this latter quantity as finite but constant

such that 0 < u <o, If so, equations (15-27) and (15-31) will reduce to
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2
2% _ (13p) 2 _ i(i+D) _Aydp _ 2
‘arz (p 3r> 3t r2 (urz) = > ar v prz (17-43)
and
22, 2.1 aG,
5 2 r p dr | ar 2 y) o=
T T
. /. 2
_AGHD sz, v 3 e\ 5%  iGi+D|u
T 5 + 231 DZ+gprl—5 > = > - (17-44)
P ar
and, for p = constant, further to
32 (44D 2
5 = S L= ire) = - vorz, (17-45)
or r
2
d 2 9 i(j+1) 1(j+1
‘ e e [ 2 (17-40)
or r

Within the scheme of our approximation, equation (17-45) is independent of
(17-46) and can be solved for rz as it stands; whereupon (17-46) can be

solved for Ay.

If we abbreviate

= «%, (17-47)

the particular solution of equation (17-45) which remains finite at the

origin can be expressed as

rz = BV/r Jj+%(Kr), (17-48)

where B denotes an integration constant. In consequences, the differential

equation (17-19) for u assumes now the form



Q
e
= |
Q
o

~J,

Q
o]

> BJ,+%(Kr), (17-49)

or r ]

V2

and its particular solution which is regular at the origin becomes

T
i=1 | 4G+ | §-1 f 53
= +
u = Ar 2341 |T J r Jj*'l/z('(r)dr

r
-j= 3/2 44
- 2_/~r / +JJ_ . (kr)driB, (17-50)
0 3+
where A represents another integration constant.

The integrals on the right-hand side of (17-50) can be evaluated by
the same techniques we employed in section XI of Report III. In doing so

we find that

r
- 1.
7t fr”i I3, (koddr = - L5 o (17-51)
0 KVY =3
and
—§-2 JF 3+ 1
r 3 r® J,,, (kr)dr = J, (xr), (17-52)
0 j+Hs /s j+3/2
which inserted in (17-50) yields
N . 16 125 ). J.+3/2(|<r) + J, , (xr)
(25+)«/r | 3 3772
- apdtl O 1GHDB 3,y (kD) (17-53)
2f3 372
K r

if advantage is taken of the recursion formula (11-36). Moreover, from

(17-18) it follows then that
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j-1 + B

Jj+%(Kr) - KT Jj_

J
A3

Ny

|
(ko) | . (17-54) 1

In order to proceed further we invoke now the boundary conditions \
\

Org = Tpp = 0 which, for u # 0, require that

3
Boriteo 7-59 \
at r = a. Inserting into it for u and v from (17-53) and (17-54) we I
|
find that
(17-56)

i-1 2 j-2 2

L2(ka)“al™A + [l(Ka) - j(j+2i]J, (a) +xa J, (k)| = =0

] 2 its i-% /a

The use of the boundary condition o__ =0 at r = a requires

Irr

a knowledge of the surface value of the function XAy governed by (17-46).

On insertion for rz from (17-48), (17-46) assumes the more explicit form

- Ca/a
_AGHD b oo ey genr 20, L (k) (17-57)
or or r2 It

and its particular solution which remains finite at the origin assume the form

r

_oaud oy iGH)ee | 3-1 ]f -3
Ay = Cx~ + 2341 ‘r ) r Jj+%(Kr)dr

r

3= 3/24]
- r J 2 _/r / JJ.+1/(Kr)dr!Bs (17"58)
0 I

where C denotes another integration constant; and which on substitution

from (17-51) and (17-52) yields
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. (14l
Ay = CrJ - _li.]___l.gﬂ J (kr) *+ J,_I/(KI‘) B
(25+1) kvt | j43/2 172

D e

- ¢pd - 10tee BJ_, (xr) (17-59)
2' 3 J2
K T
by (11-36); so that, for r = a,
(4l
Ay = cal - 1Uitlee BY py,(Ka) (17-60)
2

K2/a3
An insertion from (17-53) and (17-60) in the boundary condition

Oy), + 2u<§§)a =0 (17-61)

then yields

2(542)u - gpaj|J. (xa)
(xa) [ J+%

B i
- 2ukaJ, ; (ka)l — + Jc=0 17-62
3 )‘ A (e

Equations (17-56) and (17-62), based on the boundary conditions (17-55)
and (17-61) at r = a, contain three arbitrary constants A, B, C, and
cannot as yet be solved uniquely for them. 1In order to complete the speci-
fication of our problem, a recourse must be had to the fundamental equation
(15-26) in which (for constant p ) R continues to be given by the first
part of equation (17-35). Inserting in the latter for u from (17-53) we

find that, in the present case,

j

c, .a
_2(3-1) [,.3-1 _ i(3#1)B %4, }
R(a) 231 Aa Jj+%(Ka) pa e ; (17-63)

A3
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and if so, equation (15-36) on insertion for rz, v, \y, and R from

(17-48), (17-54), (17-60) and (17-63) will assume the form

2
p(ka)” _ 2(j-1) j-2
\ i 2541 B8P3} @ A

. . .
Iiplca)l—+ alC = - ¢, .pal, (17-64)

_|13i(i+)gpa
/a i,3

(2j+1)(Ka)2

which represents the third independent relation between our integration

constants A, B, and C.

If c; 3 = 0 on the right-hand side of equation (17-64) - i.e., if our
b
configuration is subject to the action of no external forces, equation (17-56),
(17-62) and (17-64) are homogeneous in A, B, C, and can be solved for unres-

tricted values-of these constants only if

ji-1 2 12 (s

=a” - +
Jg—u [2“ J(J+2ﬂ Jj+%(a) an_%(a) 0
2(3-1) 1G+) 2(342) - m|{J, () = 2aJ, ; () 1 | = O

o2 i+s 3%
2 . R
e 2lln O 1 (17-65)
J J (23+1)a” 72
i.e., provided that the nondimensional parameter
ka = vavp/u = o (17-66)

is a root of the transcendental equation
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2
o g 2 4 .
2525+ [2(5-1) 5+2) - + (- -
lJ(J )[(J ) (3+2) oc] o + 2503 l)[Z 2j+l}m jJrl/z(on)
= 225G-D 542 + 2] - o2la 7. - (o) (17-67)
2541 gl
or, in a slightly more simplified form,
2(3-1) 25+ % = 23+Da® + 25G-Dn| jaT. ()= J (o)
j+5/2 j+3/2
+ 43+ (G-1) 2 () = 0 (17-68)
J . j+3/2 ) T
where
m = 522 (17-69)

denotes likewise a nondimensional parameter characterizing the structure of
the respective configuration. Once the roots oy of (17-67) or (17-68)
have been determined (numerically or otherwise) for given values of m, the

normalized frequency of oscillations itself follows from the equation

vz _ Zaz

21Gp  3m

(17-70)

Since Bessel's functions of half-integral argument are expressible as
trigonometric polynomials of their arguments, equations (17-67) or (17-68)
are in effect trigonometric; and can be solved for the g¢'s corresponding
to any given value of m by standard methods applicable to such equatioms.

For small g¢'s, the following expansions may be useful. Since, by definition,
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N i 204+
J-l(@)=z it (l) (g-)
i+ = PIT(i+j+3/2) (2 (17-71)
and, therefore,
N i 2443+
=1 "(ikidy) ()T
PR :
o5 g () £ i G2y (2 (17-72)

an insertion of (17-71) and (17-72) in (17-67) converts the latter into an

equation of the form

22 (-l)i 813 (-1 (i+2) + 2[21 . . 2 4
& T (1495372) - 8ij(3-1) (j+2) [2i = (3-1)(2541) 10" + @

(17-73)

23+1

(4 21
S 205D gy 4 G2, (£) " -o.
J \ L

This equation admits obviously of the root o = 0, corresponding to the

state of equilibrium. For i = 0, it is satisfied by

o’ _ 21(-D) |, 2= (2441)

m 23+1 m ’ (17-74)

which on insertion from (17-66) and (17-69) can be rewritten as

, \
i (-1
o =3 ey + Grh e 2ot

2mGp 3 | (23+1) (17-75)

and this for uw = 0 reduces indeed to (17-39).

The foregoing results represent the most general formulation of our
results, valid when the surface value of Ay in the boundary condition
(17-58) is different from zero. Should this not be the case, and (like

for fluids) (Ag)a = 0, it follows immediately from (17-60) that the constant
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s ~jHs =2
C = Bij(i+hgoa I (@] (17-76)

If so, equations (17-56) and (17-62) then become independent of (17-64);
and are solvable for arbitrary values of A and B provided that o is

the root of the determinantal equation

i-1 2 12 ...
3 a [Eﬂ j(3+2) Jj+%(a) + an_%(a)
=0 (17-77)
i-1 2 7Y J _
3G+ DI g, (@) = oy ()
which can be reduced to
an+5/2(a) + Jj+3/2(a) =0 ; (17-78)

and once these equations have been solved for o, the corresponding value
of m <can then be obtained from (17-64). The reader may wish to note the
similarity of the preceding equations (17-77) - (17-68) with equivalent
equations (12-11) - (12-12) valid for the case of incompressible viscous
fluids (cf. Report III), which prove to be formally identical with the
present results except for the definition of the parameter o (which is,
in fact, identical with a geometric mean of the arguments o and B of

equations (12-12) and (12-14) in Report III, and related by (11-25)).

The foregoing equations (17~65) - (17-78) apply to a homogeneous system
obtaining if the constants c; 4 on the right—hand side of equation (17-64)
’

are set equal to zero. If this is not the case by virtue of external forces,

unique solutions for the constants A, B, and C can be obtained by a
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simultaneous solution of (17-56), (17-62) and (17-64) in terms of c; i
Provided that @ 1is not a root of (17-67) or (17-68), the scale constant

A which specifies the amplitude of the forced displacements u and v

proves readily to be expressible as

.2 2
23, 5 * [2(3 -1)-a ]31#1

A=jpal2
. . 2 . 2 ..
[?(J—l)(23+l) - (2§+)a” + ZJ(J—l)H% &Llj+5/2(a) - Jj+3/2(6)] +

u

. , 2
+ 4(j+1) (3-1) Jj+3/2(a) (17-79)
with similar results for B and C. As u > o, all these constants are
bound to tend to zero.

In the equilibrium case, for which

v =0, ' (17-80)

rz = Bor3+l (17-81)
which is well-behaved at the origin; and equation (17-19) for u,
Bzu 4 du (3-1) (4+2) j-1
— + o - =3j(3+)B, " 7, (17-82)
5y r 9r r2 0

will admit of a similar polynomial solution of the form

6= A rj--l + i(i+1) 3 rJ+l

83
0 7(2343) SoF » (17-83)
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corresponding by (17-18) to

A
_ .0 j-1 i+3 i+l
v ] r *’Eﬂé&?ﬁ?f BO r . (17-84)

The boundary condition (17-55) than reveals by insertion from (17-83)

and (17-84) that

0 2(5-1) (24+3
0 i“(j+2)a
by virtue of which
j-1 .2_1 . 2
N 3%3;37-(;) , (17-86)
and
A 2
_R s, L GenGey (e _
v=2Th e (a) ‘ : (17-87)

Since, moreover, in the equilibrium case the boundary condition (17-61)

reveals that

o onfdu)  _ 2u(i-1) j-2 -
Ay, = 2u<3r>a = G @ Ay (17-88)
while equation (17-35) together with (17-86) leads to
R(a) [3j(j+2) Ay - T | 2 (17-89)

an insertion of (17-81), (17-85) and (17-88) - (17-89) in (15-26) that

2, c, .
Ay = 3;($ZI§) - 2 <4;G )‘ (17-90)
] i+ (u/gpa) (25 +43+3) P
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so that the displacements u, v
force specified by the coefficients ¢
b

ultimately assume the form

_ 31+

rj—l
u(r) 2(j-1) 1 + q/m \l

caused by an application of an external

of the disturbing potential will

.2 2] c. |
_.J_‘__1_<£> %
i (3+2) \a 41Gp

and
3(4#2) ot G=1) G3) [\ | 1,3
v(r) = 2 - Al (£) | 2
2(3-1) 1 + gq/m j(i+2) a 41Gp
where m = gpa/u continues to be given by equation (17-69) and

jg = (25+L)(2§+3) - 25(3+2) = 2j7+43i43 .

(17-91)

(17-92)
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3. Fluid Configurations

If the self-gravitating globe under investigation were fluid (i.e.,

possessed zero rigidity), we should expect that
a=u=20. (17-94)

If so, the matter in question will be incapable of transmitting transversal
waves (i.e., c. = 0 1in accordance with equation (15-50)). However, the

velocity o of propagation of the longitudinal waves must remain finite -

a requirement which implies, by (15-51), that
2 = % <o, (17-95)

Hence, for p # 0, A < » in the present case; and equations (15-27) and

(15-31) reduce them to

9 A 3
p—5(rz) + {5 B+ gy =0 (17-96)
ot
and
2 2 . /s

AR A L+[£__l.ée}i_.ﬂ_1iil (\y)
Btz arZ r p dr|dr r2
= ‘Ay - j(i+t)z + 6(1 - %> (-g—: - y) grp— (17-97)

Let us consider first the equilibrium case, in which neither y mnor z
depend on the time. If so, equation (17-96) can be satisfied for an arbitrary
function p(r) only if y = 0 as in the incompressible case, for which
equations (17-18) and (17-19) continue to hold good. Inserting them on the

right-hand side of (17-97) we find this latter equation then to reduce to
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23
r '_\21‘ + 2(3%).~ = >r3% + [2 - j(3+1)]u = O, (17-98)

which on substituting u = r{ becomes identical with the Clairaut equation
(17-31). That this should be so follows indeed directly from equation (15-26),

which for v =0 and y = 0 together with a =y = 0 reduces (in accordance

with 15-23) to

r r
u 2 1 1 5 i+2
R=—[prdr-—:———'—.——[p-—~(ur )dr
r2 0 23i+1 rJ+l 0 ar
a k|
j / 3, 1§ 4,1 _
+r J P35S (ur™ “)dr } - e , (17-99)

which represents Clairaut's equation in its integral form.

Next, let us turn to the non-equilibrium (time-dependent) case, for
which v # 0 and
A= pc2, (17-100)
where ¢ denotes the velocity of propagation of small (longitudinal) disturb-
ances which ( like A and p ) will hereafter be regarded as a function of

r only, and such that

(17-101)
where P denotes the pressure in the fluid and y, the ratio of specific
heats of the respective material. If so, the reader can easily verify that,
for example, equation (17-6) valid for j = 0 reduces to the well-known

equation governing the harmonic pulsations of self-gravitating globes of in-

*
viscid fluid.

The reader may even notice that it continues formally to hold good also
for viscous fluids (cf., Kopal, 1964) provided that the Lamé coefficient
u of rigidity if replaced by ivug, where ug denotes the coefficient
of material viscosity; v, the frequency of oscillations; and 1, the
imaginary unit,
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1f, moreover, our fluid at rest is in hydrostatic equilibrium requiring

that
oP
5 - g0 (17-102)

the coefficient of the second term on the left-hand side of equation (17-96)

can, by use of (17-100) - (17-102), be expressed as

2 3 2113 _ 1
or YP

@l
|
|

= c“A, (17-103)

1

+
3

i)

0
o j~

where the term in the curly brackets on the right-hand side becomes identical
with the quantity A introduced already by equation (6-19) of Report II -
and our present equation (17-96) becomes indeed identical with equation (6-25)

if the viscous terms in the latter are omitted (i.e., u =0 ).
The quantity A as defined by (6-19) or (17-103) vanishes if the equili-
brium structure of our configuration is adiabatic, so that
P =xp' (17-104)

where K as well as vy are constants; and is different from zero otherwise,
If A =0, the validity of equation (17-96) in the time-dependent case re-

quires that
z =0, (17-105)

which by (15-8) and (15-9) implies that

u=r N4y (17-106)




and
2
9 2 3 i (j+
yo= |2 422 AGHED | oy (17-107)
ar2 r or r2

If we insert now (17-106) - (17-107) in (17-97), the latter will reduce to

2 2 2
5 9 10 14
2_________..2.__.1_@.9__21_4_.1_(1'1'_1_). A _a__+_2_.i._.]£.—]+_ll (I'V)
A L2 2 |r o arl|or 2 2 ror 2
at or r oY r

2 o
- 2gp lz —35-+-%[% + 32]5%-+ [1 - %?} D (+2) | (17-108)

or o p

T
which constitutes a differential equation of fourth order for wv.

Therefore, while in the equilibrium case (v = 0) and for A # 0
equation (17-96) necessarily requires that y = 0, which converts (17-97)
into Clairaut's equation (17-98) for u ; in the non-equilibrium case
(v # 0) the condition z =0 (leading by (17-106) and (17-107) to (17-108))
becomes necessary only in the adiabatic case (i.e., A = 0 ) and not other-

wise; for A#0, z =0 only if y =0 ; in which case equations

du _g_‘i - 'i "—+l")" v = Os

Yo T r
(17-109)
g =X Y _U_ g,
ir r r

can (for j > 1 ) be satisfied with particular solutions for u and v
varying as rj"l which remain finite at the origin. However, a glance at

the fundamental equations (17-96) and (17-97) of motion in fluid case reveals
that they could also be satisfied by such a solution only if our configuration

were homogeneous (i.e., for p =op ) .
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