344 research outputs found

    A PMSM current controller system on FPGA platform

    Get PDF
    Permanent magnet synchronous motor (PMSM) has gained more interest recently in industrial applications. Digital hardware solutions such as field programmable gate arrays (FPGAs) are the most preferred methods for controlling PMSM drivers. This paper presents an implementation of a current control system for PMSM based on FPGA. Encoder-based speed and position detection method has been used in proposed hardware. The whole system has been modeled and simulated in system level using MATLAB/SIMULINK. Hardware architecture for all computational blocks is implemented using Verilog HDL. The hardware architecture has been successfully synthesized and implemented on Altera Cyclone II FPGA. Proposed system architecture and computational blocks are described and system level and RTL simulation results are presented. Simulation results show that the total computation cycle time of implemented system on Altera Cyclone II FPGA is 456ns.Keywords: PMSM, FPGA, Incremental encoder, CORDIC, Hysteresis Current Control

    Model for eukaryotic tail-anchored protein binding based on the structure of Get3

    Get PDF
    The Get3 ATPase directs the delivery of tail-anchored (TA) proteins to the endoplasmic reticulum (ER). TA-proteins are characterized by having a single transmembrane helix (TM) at their extreme C terminus and include many essential proteins, such as SNAREs, apoptosis factors, and protein translocation components. These proteins cannot follow the SRP-dependent co-translational pathway that typifies most integral membrane proteins; instead, post-translationally, these proteins are recognized and bound by Get3 then delivered to the ER in the ATP dependent Get pathway. To elucidate a molecular mechanism for TA protein binding by Get3 we have determined three crystal structures in apo and ADP forms from Saccharomyces cerevisae (ScGet3-apo) and Aspergillus fumigatus (AfGet3-apo and AfGet3-ADP). Using structural information, we generated mutants to confirm important interfaces and essential residues. These results point to a model of how Get3 couples ATP hydrolysis to the binding and release of TA-proteins

    The Effect of Aspirin on Moderate to Severe Asthmatic Patients with Aspirin Hypersensitivity, Chronic Rhinosinusitis, and Nasal Polyposis

    Get PDF
    Asthmatic patients may have aspirin-exacerbated respiratory disease and experience acute dyspnea and nasal symptoms within 3 hours after the ingestion of aspirin. This study aimed to evaluate the effect and outcome of daily low-dose aspirin in the treatment of moderate to severe asthma in patients with concomitant aspirin hypersensitivity and chronic rhinosinusitis with nasal polyposis (CRSwNP). This clinical trial was conducted from February 2014 to February 2015 on 46 adult patients with moderate to severe asthma accompanied by CRSwNP. Patients with a positive aspirin challenge were blindly randomized in three groups receiving placebo/day (A); aspirin 100 mg/day (B); and aspirin 325mg/day (C), respectively. Clinical findings, FEV1 and ACT scores were recorded and compared before, during, and after treatment for 6 months. Of 46 participants at baseline, 30 patients completed this 6-month trial study. The level of asthma control was significant; based on Asthma Control Test (ACT) when comparing the results in groups A and C and also groups B and C, but it was not significant when comparing ACT scores between groups A and B. FEV1 before and after treatment was significant when comparing groups A and B, groups A and C, and groups B and C. To conclude, aspirin desensitization with a daily dose of 325 mg aspirin resulted in the improvement of long-term control of asthma. A daily aspirin dose of 100 mg was not associated with such an increase in ACT score

    HIT family genes: FHIT but not PKCI-1/HINT produces altered transcripts in colorectal cancer

    Get PDF
    Forty-five colorectal adenocarcinomas were examined for alterations in the HIT family genes FHIT and PKCI-1/HINT by a combination of reverse transcriptase polymerase chain reaction and DNA sequencing. In all cases a single transcript corresponding to the reported sequence was detected using primers specific for the PKCI-1/HINT gene. In contrast multiple transcripts were detected using primers specific for the FHIT gene transcript. 6% (3/45) of tumours evinced no detectable expression of any FHIT transcript and a further 12% (6/45) produced only the normal full length transcripts. Ninety-six aberrant transcripts were characterized from the remaining tumours. Deviations from the normal full length sequence characterized included deletions, insertions of novel sequences, a point mutation as well as the usage of a putative alternate splice site in exon 10. Message variants were detected with approximately equal frequency in all tumour stages with the exception that templates with insertions were found solely in Dukes’ stage B tumours (P < 0.001). With the exception of the putative alternate splice site, aberrant transcripts were not detected in matched normal mucosa. These results suggest that members of the HIT family of genes are only selectively involved in tumorigenesis and that perturbation of FHIT gene expression is an early event in colorectal tumorigenesis. © 1999 Cancer Research Campaig

    Identification of a Novel Signaling Pathway and Its Relevance for GluA1 Recycling

    Get PDF
    We previously showed that the serum- and glucocorticoid-inducible kinase 3 (SGK3) increases the AMPA-type glutamate receptor GluA1 protein in the plasma membrane. The activation of AMPA receptors by NMDA-type glutamate receptors eventually leads to postsynaptic neuronal plasticity. Here, we show that SGK3 mRNA is upregulated in the hippocampus of new-born wild type Wistar rats after NMDA receptor activation. We further demonstrate in the Xenopus oocyte expression system that delivery of GluA1 protein to the plasma membrane depends on the small GTPase RAB11. This RAB-dependent GluA1 trafficking requires phosphorylation and activation of phosphoinositol-3-phosphate-5-kinase (PIKfyve) and the generation of PI(3,5)P2. In line with this mechanism we could show PIKfyve mRNA expression in the hippocampus of wild type C57/BL6 mice and phosphorylation of PIKfyve by SGK3. Incubation of hippocampal slices with the PIKfyve inhibitor YM201636 revealed reduced CA1 basal synaptic activity. Furthermore, treatment of primary hippocampal neurons with YM201636 altered the GluA1 expression pattern towards reduced synaptic expression of GluA1. Our findings demonstrate for the first time an involvement of PIKfyve and PI(3,5)P2 in NMDA receptor-triggered synaptic GluA1 trafficking. This new regulatory pathway of GluA1 may contribute to synaptic plasticity and memory

    Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model

    Get PDF
    Background: Obesity is a complex metabolic condition in strong association with various diseases, like type 2 diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and genetic factors and their interactions, including genome-wide genetic interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches in a porcine model. Methods: We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms. Results: WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P <0.001). Functional annotation identified pathways enlightening the association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E(-7)), and immune-related complications (e. g. Natural killer cell mediated cytotoxity, P = 3.8E(-5); B cell receptor signaling pathway, P = 7.2E(-5)). Lemon-Tree identified three potential regulator genes, using confident scores, for the WGCNA module which was associated with osteoclast differentiation: CCR1, MSR1 and SI1 (probability scores respectively 95.30, 62.28, and 34.58). Moreover, detection of differentially connected genes identified various genes previously identified to be associated with obesity in humans and rodents, e.g. CSF1R and MARC2. Conclusions: To our knowledge, this is the first study to apply systems biology approaches using porcine adipose tissue RNA-Sequencing data in a genetically characterized porcine model for obesity. We revealed complex networks, pathways, candidate and regulatory genes related to obesity, confirming the complexity of obesity and its association with immune-related disorders and osteoporosis

    A tau homeostasis signature is linked with the cellular and regional vulnerability of excitatory neurons to tau pathology.

    Get PDF
    Excitatory neurons are preferentially impaired in early Alzheimer's disease but the pathways contributing to their relative vulnerability remain largely unknown. Here we report that pathological tau accumulation takes place predominantly in excitatory neurons compared to inhibitory neurons, not only in the entorhinal cortex, a brain region affected in early Alzheimer's disease, but also in areas affected later by the disease. By analyzing RNA transcripts from single-nucleus RNA datasets, we identified a specific tau homeostasis signature of genes differentially expressed in excitatory compared to inhibitory neurons. One of the genes, BCL2-associated athanogene 3 (BAG3), a facilitator of autophagy, was identified as a hub, or master regulator, gene. We verified that reducing BAG3 levels in primary neurons exacerbated pathological tau accumulation, whereas BAG3 overexpression attenuated it. These results define a tau homeostasis signature that underlies the cellular and regional vulnerability of excitatory neurons to tau pathology

    Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access Article under the CC BY 4.0 license. Background: Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods: The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings: Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation: Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI. Funding: Bill & Melinda Gates Foundation

    Clamp loader ATPases and the evolution of DNA replication machinery

    Get PDF
    Clamp loaders are pentameric ATPases of the AAA+ family that operate to ensure processive DNA replication. They do so by loading onto DNA the ring-shaped sliding clamps that tether the polymerase to the DNA. Structural and biochemical analysis of clamp loaders has shown how, despite differences in composition across different branches of life, all clamp loaders undergo the same concerted conformational transformations, which generate a binding surface for the open clamp and an internal spiral chamber into which the DNA at the replication fork can slide, triggering ATP hydrolysis, release of the clamp loader, and closure of the clamp round the DNA. We review here the current understanding of the clamp loader mechanism and discuss the implications of the differences between clamp loaders from the different branches of life
    corecore