1,001 research outputs found

    Evaluation of land surface models in reproducing satellite derived leaf area index over the high-latitude northern hemisphere. Part II: Earth system models

    Get PDF
    PublishedJournal ArticleLeaf Area Index (LAI) is a key parameter in the Earth System Models (ESMs) since it strongly affects land-surface boundary conditions and the exchange of matter and energy with the atmosphere. Observations and data products derived from satellite remote sensing are important for the validation and evaluation of ESMs from regional to global scales. Several decades' worth of satellite data products are now available at global scale which represents a unique opportunity to contrast observations against model results. The objective of this study is to assess whether ESMs correctly reproduce the spatial variability of LAI when compared with satellite data and to compare the length of the growing season in the different models with the satellite data. To achieve this goal we analyse outputs from 11 coupled carbon-climate models that are based on the set of new global model simulations planned in support of the IPCC Fifth Assessment Report. We focus on the average LAI and the length of the growing season on Northern Hemisphere over the period 1986-2005. Additionally we compare the results with previous analyses (Part I) of uncoupled land surface models (LSMs) to assess the relative contribution of vegetation and climatic drivers on the correct representation of LAI. Our results show that models tend to overestimate the average values of LAI and have a longer growing season due to the later dormancy. The similarities with the uncoupled models suggest that representing the correct vegetation fraction with the associated parameterizations; is more important in controlling the distribution and value of LAI than the climatic variables. © 2013 by the authors.This work was funded by the European Commission’s 7th Framework Programme under Grant Agreements number 238366 (GREENCYCLESII project) and 282672 (EMBRACE project)

    Detecting Change in the Urban Road Environment Along a Route Based on Traffic Sign and Crossroad Data

    Get PDF
    Occurrences of traffic signs that belong to certain sign categories and occurrences of crossroads of various topologies are utilized in detecting change in the urban road environment that moves past an ego-car. Three urban environment types, namely downtown, residential and industrial/commercial areas, are considered in the study and changes between these are to be detected. In the preparatory phase, the ego-car is used for traffic sign and crossroads data collection. In the application phase, the ego-car hosts an advanced driver assistance system (ADAS) that captures and analyzes images of the road environment and computes the required input data to the proposed road environment detection (RoED) subsystem. A statistical inference method relying on the minimum description length (MDL) principle was applied to the change detection problem at hand. The above occurrences along a route are seen as a realization of an inhomogeneous marked Poisson process. Page-Hinkley change detectors tuned to empirical data were set to work to detect change in the urban road environment. The process and the quality of the change detection are demonstrated via examples from three urban settlements in Hungary. Document type: Part of book or chapter of boo

    Non-minimally Coupled Tachyonic Inflation in Warped String Background

    Full text link
    We show that the non-minimal coupling of tachyon field to the scalar curvature, as proposed by Piao et al, with the chosen coupling parameter does not produce the effective potential where the tachyon field can roll down from T=0 to large TT along the slope of the potential. We find a correct choice of the parameters which ensures this requirement and support slow-roll inflation. However, we find that the cosmological parameter found from the analysis of the theory are not in the range obtained from observations. We then invoke warped compactification and varying dilaton field over the compact manifold, as proposed by Raeymaekers, to show that in such a setup the observed parameter space can be ensured.Comment: minor typos corrected and references adde

    Statefinder diagnosis in a non-flat universe and the holographic model of dark energy

    Full text link
    In this paper, we study the holographic dark energy model in non-flat universe from the statefinder viewpoint. We plot the evolutionary trajectories of the holographic dark energy model for different values of the parameter cc as well as for different contributions of spatial curvature, in the statefinder parameter-planes. The statefinder diagrams characterize the properties of the holographic dark energy and show the discrimination between this scenario and other dark energy models. As we show, the contributions of the spatial curvature in the model can be diagnosed out explicitly by the statefinder diagrams. Furthermore, we also investigate the holographic dark energy model in the www-w' plane, which can provide us with a useful dynamical diagnosis complement to the statefinder geometrical diagnosis.Comment: 16 pages, 4 figures; final versio

    Inflationary universe in loop quantum cosmology

    Full text link
    Loop quantum cosmology provides a nice solution of avoiding the big bang singularity through a big bounce mechanism in the high energy region. In loop quantum cosmology an inflationary universe is emergent after the big bounce, no matter what matter component is filled in the universe. A super-inflation phase without phantom matter will appear in a certain way in the initial stage after the bounce; then the universe will undergo a normal inflation stage. We discuss the condition of inflation in detail in this framework. Also, for slow-roll inflation, we expect the imprint from the effects of the loop quantum cosmology should be left in the primordial perturbation power spectrum. However, we show that this imprint is too weak to be observed.Comment: 21 pages, 4 figures; accepted for publication in JCA

    Cosmological Scaling Solutions of Multiple Tachyon Fields with Inverse Square Potentials

    Full text link
    We investigate cosmological dynamics of multiple tachyon fields with inverse square potentials. A phase-space analysis of the spatially flat FRW models shows that there exists power-law cosmological scaling solutions. We study the stability of the solutions and find that the potential-kinetic-scaling solution is a global attractor. However, in the presence of a barotropic fluid the solution is an attractor only in one region of the parameter space and the tracking solution is an attractor in the other region. We briefly discuss the physical consequences of these results.Comment: 10 pages, 1 figure, LaTeX2

    Inflationary attractor in Gauss-Bonnet brane cosmology

    Full text link
    The inflationary attractor properties of the canonical scalar field and Born-Infeld field are investigated in the Randall-Sundrum II scenario with a Gauss-Bonnet term in the bulk action. We find that the inflationary attractor property will always hold for both the canonical and Born-Infeld fields for any allowed non-negative Gauss-Bonnet coupling. We also briefly discuss the possibility of explaining the suppressed lower multiples and running scalar spectral index simultaneously in the scenario of Gauss-Bonnet brane inflation.Comment: 7 pages, no figures. An error in the discussion of BI field corrected, conclusion correcte

    Evaluation of land surface models in reproducing satellite-derived LAI over the high-latitude northern hemisphere. Part I: Uncoupled DGVMs

    Get PDF
    PublishedJournal ArticleLeaf Area Index (LAI) represents the total surface area of leaves above a unit area of ground and is a key variable in any vegetation model, as well as in climate models. New high resolution LAI satellite data is now available covering a period of several decades. This provides a unique opportunity to validate LAI estimates from multiple vegetation models. The objective of this paper is to compare new, satellite-derived LAI measurements with modeled output for the Northern Hemisphere. We compare monthly LAI output from eight land surface models from the TRENDY compendium with satellite data from an Artificial Neural Network (ANN) from the latest version (third generation) of GIMMS AVHRR NDVI data over the period 1986-2005. Our results show that all the models overestimate the mean LAI, particularly over the boreal forest. We also find that seven out of the eight models overestimate the length of the active vegetation-growing season, mostly due to a late dormancy as a result of a late summer phenology. Finally, we find that the models report a much larger positive trend in LAI over this period than the satellite observations suggest, which translates into a higher trend in the growing season length. These results highlight the need to incorporate a larger number of more accurate plant functional types in all models and, in particular, to improve the phenology of deciduous trees. © 2013 by the authors.The corresponding author also thanks the CONACYT-CECTI and the University of Exeter for their funding during the PhD studies. The National Center for Atmospheric Research is sponsored by the National Science Foundation

    Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient

    Get PDF
    The global land and ocean carbon sinks have increased proportionally with increasing carbon dioxide emissions during the past decades 1 . It is thought that Northern Hemisphere lands make a dominant contribution to the global land carbon sink 2–7 ; however, the long-term trend of the northern land sink remains uncertain. Here, using measurements of the interhemispheric gradient of atmospheric carbon dioxide from 1958 to 2016, we show that the northern land sink remained stable between the 1960s and the late 1980s, then increased by 0.5 ± 0.4 petagrams of carbon per year during the 1990s and by 0.6 ± 0.5 petagrams of carbon per year during the 2000s. The increase of the northern land sink in the 1990s accounts for 65% of the increase in the global land carbon flux during that period. The subsequent increase in the 2000s is larger than the increase in the global land carbon flux, suggesting a coincident decrease of carbon uptake in the Southern Hemisphere. Comparison of our findings with the simulations of an ensemble of terrestrial carbon models 5,8 over the same period suggests that the decadal change in the northern land sink between the 1960s and the 1990s can be explained by a combination of increasing concentrations of atmospheric carbon dioxide, climate variability and changes in land cover. However, the increase during the 2000s is underestimated by all models, which suggests the need for improved consideration of changes in drivers such as nitrogen deposition, diffuse light and land-use change. Overall, our findings underscore the importance of Northern Hemispheric land as a carbon sink
    corecore