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Abstract: Leaf Area Index (LAI) is a key parameter in the Earth System Models (ESMs) 
since it strongly affects land-surface boundary conditions and the exchange of matter and 
energy with the atmosphere. Observations and data products derived from satellite remote 
sensing are important for the validation and evaluation of ESMs from regional to global 
scales. Several decades’ worth of satellite data products are now available at global scale 
which represents a unique opportunity to contrast observations against model results. The 
objective of this study is to assess whether ESMs correctly reproduce the spatial variability 
of LAI when compared with satellite data and to compare the length of the growing season 
in the different models with the satellite data. To achieve this goal we analyse outputs from 
11 coupled carbon-climate models that are based on the set of new global model 
simulations planned in support of the IPCC Fifth Assessment Report. We focus on the 
average LAI and the length of the growing season on Northern Hemisphere over the period 
1986–2005. Additionally we compare the results with previous analyses (Part I) of 
uncoupled land surface models (LSMs) to assess the relative contribution of vegetation and 
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climatic drivers on the correct representation of LAI. Our results show that models tend to 
overestimate the average values of LAI and have a longer growing season due to the later 
dormancy. The similarities with the uncoupled models suggest that representing the correct 
vegetation fraction with the associated parameterizations; is more important in controlling 
the distribution and value of LAI than the climatic variables. 

Keywords: LAI; CMIP5; Earth System Models; leaf phenology; remote sensing of vegetation 
 

1. Introduction 

The Leaf Area Index (LAI) is defined as one-sided green leaf area per unit ground area in broadleaf 
canopies, and as the projected needle leaf area in coniferous canopies [1]. LAI is a key parameter in 
most ecosystem productivity models and global (or regional) models of climate, hydrology, 
biogeochemistry and ecology [2]. 

Usually defined as the time evolution of the LAI, leaf phenology depends primarily on the climatic 
conditions for a given biome [3]. It strongly affects land-surface boundary conditions and the exchange of 
matter and energy with the atmosphere, influencing the surface albedo, roughness, and dynamics of the 
terrestrial water cycle [4,5]. Changes in the phase of LAI may therefore have impacts on climate [6,7], on 
the terrestrial carbon cycle [8], and on the atmospheric chemistry through the emission and deposition of 
several compounds [9–12]. Therefore, accurate estimates of canopy phenology are critical to quantifying 
carbon and water exchange between forests and the atmosphere and its response to climate change [8]. 

Phenology studies based on field observations [13,14], remote-sensing data [15–19], atmospheric 
CO2 observations [20], and biogeochemical models [21] indicate that the vegetation growing season 
length (GSL) has significantly increased over the past decades [8]. Specifically, in the temperate and 
boreal regions of the Northern Hemisphere, the growing season begins in spring with increasing 
temperatures and solar radiation, the melting of snow, eventual thawing of the soil organic horizons, 
and the start of photosynthesis [22]. It terminates in autumn as temperatures and solar radiation 
decrease, soils refreeze, and photosynthesis ceases [23,24]. Therefore, temperature anomalies in spring 
and autumn affect the timing and duration of the growing season [8,25], which in turn control the 
seasonal onset and ending of the ecosystem carbon uptake period in these regions [8,26,27].  

Rising temperatures during recent decades have resulted in a widely reported pattern of earlier and 
longer-lasting growing seasons from local to continental scales [13,15,16,20,27–29]. The greater rate 
of change observed in the beginning of the growing season is thought to be a response to rapid spring 
warming, and earlier snowmelt and soil thaw [15,30], while the smaller change in termination date is 
likely connected with lower rates of autumn warming [31] and the influence of other environmental 
effects on autumn phenology and growth cessation [23,32,33]. 

The importance of land surface processes in the climate system has mostly been supported by 
modelling studies on climate sensitivity to albedo [34–36], soil moisture [37–39], surface 
roughness [40], and leaf area index [6,41–46]. 

In the first versions of general circulation models (GCMs) and regional climate models (RCMs) the 
soil-vegetation-atmosphere transfer (SVAT) schemes [47] were originally designed to simulate 
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exchanges of matter and energy between the land surface and the atmosphere, with vegetation leaf area 
index as a forcing variable, rather than a prognostic state [6,44,48–52].  

In order to improve the representation of the dynamical behaviour of the vegetation, a number of 
models have recently evolved to include biogeochemical processes [53–61].  

In the last few years a new generation of general circulation models has become available to the 
scientific community. In comparison to the former model generation, these Earth System Models 
incorporate additional components describing the atmosphere’s interaction with land-use and vegetation, 
as well as explicitly taking into account atmospheric chemistry, aerosols and the carbon cycle [62]. 

The inclusion of Earth system components in a climate model has a two-fold benefit. Firstly, it 
allows a consistent calculation of the impacts of climate change on atmospheric composition or 
ecosystems [63]. Secondly, it allows the incorporation of biogeochemical feedbacks, which can be 
negative, dampening the sensitivity of the climate to external forcing [64], or positive, amplifying the 
sensitivity [65]. However, adding Earth systems components and processes increases the complexity of 
the model system, thus a consistent validation of the variables simulated by these models is needed. 

The assessment of vegetation phenology using remotely sensed data has a long history [66,67] with 
more recent studies making use of satellite data to examine the potential effects of climate change on 
phenology [15,68–72]. In fact, remote sensing has been widely recognised as a valuable tool for the 
detection and analyses of simulated data, both spatially and temporally. The past decade has seen a 
particularly rapid increase in the number of launched satellites, as well as an improvement in both 
spatial and spectral resolution of data they produce. Therefore, the ability to rapidly assess LAI using 
vegetation indices from remotely sensed imagery provides a means to rapidly assess ESMs’ skills at 
simulating vegetation greenness over a wide geographic area. 

The existence of vegetation models that use prescribed climate represents a unique opportunity to 
compare and contrast the effect of inner climatic variation on ESMs against the effect of differences in 
the vegetation modules. In other words, comparing different LSMs allows the detection of flaws in the 
vegetation dynamics, while comparing ESMs allows the identification of climate effect on vegetation 
processes, and the comparison of the two leads to the weighing of both effects.  

In this context, we check the ability of different ESMs to reproduce the spatial and temporal 
variability of the satellite observed LAI. Specifically, the objective of this study is to assess whether 
ESMs correctly reproduce the spatial variability of LAI when compared with satellite data, and asses 
how long the growing season is in the different models compared with the satellite data over the 
Northern Hemisphere. In fact, as described above, over this area several authors have observed an 
increase in the growing season length. These changes in LAI, mostly due to an increase in temperature 
at the beginning of the growing season, have important implications on the global carbon cycle [8] and 
on atmospheric chemistry [9–12] simulated by the ESMs. Therefore, obtaining an accurate prediction 
of the temporal evolution of LAI is imperative not only in predicting the correct LAI seasonal changes, 
but also because of the feedbacks of LAI with the atmosphere.  

In addition, we compare results from uncoupled models from part I [73] with the ESMs to elucidate 
the weighed role of vegetation and climate on the spatial and temporal evolution of LAI. 
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2. Material and Methods 

2.1. Coupled Model Intercomparison Project Phase 5 (CMIP5) Simulations  

We analyse output from 11 Coupled Model Intercomparison Project Phase 5 (CMIP5) coupled 
carbon-climate models that, at the time of our analysis, had been submitted to the Program for Climate 
Model Diagnosis and Inter-comparison (PCMDI) Earth System Grid (ESG) [74].  

The land components of these ESMs differ in their representations of vegetation types, soil 
properties, human disturbances, carbon and nitrogen pools, as well as in their horizontal resolutions. 
The models used in this study, along with the main features controlling their terrestrial carbon cycle, 
are listed in Table 1.  

Table 1. Coupled Model Intercomparison Project Phase 5 (CMIP5) Earth System Models 
used in this study with the associated land models and main features controlling the 
terrestrial carbon cycle. 

Models Source Land Models 
Dynamic 

Vegetation 
#PFTs 

N 

Cycle 

Resolution 

(Lat. × Lon.) 
Reference 

BCC-CSM1 Beijing Climate Center, China BCC_AVIM1.0 N 15 N 
~2.8125° × 

2.8125° 

[75] 

BNU-ESM Beijing Normal University, China CoLM Y n/a Y 
~2.8125° × 

2.8125° 

[76] 

CanESM2 
Canadian Centre for Climate 

Modelling and Analysis, Canada 
CLASS2.7 + CTEM1 N 9 N 

~2.8125° × 

2.8125° 

[77] 

CESM1-BGC 
National Center for Atmospheric 

Research, USA 
CLM4 N 15 Y 1.25° × 0.9  

[78] 

GFDL-

ESM2G 

Geophysical Fluid Dynamics 

Laboratory, USA 
LM3 Y 5 N 2° × 2.5° 

[79] 

HadGEM2-

CC 
Met Office Hadley Centre, UK JULES + TRIFFID Y 5 N 1.25° × 1.875° 

[63] 

INMCM4 
Institute for Numerical Mathematics, 

Russia 
Simple model N n/a N 1.5° × 2 

[80] 

IPSL-CM5A-

MR Institut Pierre Simon Laplace, France 
ORCHIDEE N 13 N 1.25° × 2.5° 

[81] 

MIROC-ESM 

Japan Agency for Marine-Earth 

Science and Technology, Japan; 

Atmosphere and Ocean Research 

Institute, Japan; 

National Institute for Environmental 

Studies, Japan 

MATSIRO + SEIB-DGVM Y 13 N 
~2.8125° × 

2.8125° 

[82] 

MPI-ESM-

MR 

Max Planck Institute for Meteorology, 

Germany 
JSBACH + BETHY Y 12 N 

1.875° × 

1.875° 

[83] 

NorESM1-

ME 
Norwegian Climate Centre, Norway CLM4 N 16 Y 1.9° × 2.5° [84] 

Our analysis focuses on the historical period (20th century simulations; CO2 concentration driven), 
which was forced by a variety of externally imposed changes such as increasing greenhouse gas and 
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sulphate aerosol concentrations, change in solar radiation, and forcing by volcanic eruptions [62]. 
Considering the historical experiments, in general for most of the CMIP5 models the simulation starts 
in the year 1850 and ends in 2005. Within this period, we focus only on the last 20 years of the 20th 
century simulation (1986–2005); in fact, although satellite data are available before 1986, we decided 
to use the same reference period used by [85] in order to be consistent with their analysis and results.  

Besides, it is noteworthy that some models have only one realisation, but other models have many 
runs; these realisations represent climate simulations with different initial conditions. In the next 
section, we present results only from the first realization for each individual model. 

For comparisons and evaluations, we re-grid all model outputs to a common 1° × 1° grid using a 
bilinear interpolation method. This resolution was chosen to be consistent with the resolution of 
uncoupled models [73]. Although the CMIP5 archive includes daily means for a few variables, to be 
consistent with uncoupled models analysis [73] we focus here only on the monthly mean model output. 

2.2. Satellite Data  

The LAI data set used in this study (LAI3g) was generated using an Artificial Neural Network 
(ANN) from the latest version (third generation) of GIMMS AVHRR NDVI data for the period July 
1981 to December 2010 at 15-day frequency [86]. The ANN was trained with best-quality Collection 5 
MODIS LAI product and corresponding GIMMS NDVI data for an overlapping period of 5 years 
(2000 to 2004) and then tested for its predictive capability over another five year period (2005 to 
2009). The accuracy of the MODIS LAI product is estimated to be 0.66 LAI units [86] and the data is 
for 1-sided LAI. Further details on the LAI3g and the comparison with other satellite products are 
provided in [86,87]. 

2.3. Leaf Phenology Analysis  

Growing season onset, dormancy and length were all calculated based on the LAI seasonal 
amplitude. In fact, LAI has been shown to have a normal distribution over the year in northern 
latitudes [71], so we consider the start of the growing season to be 20% of the maximum amplitude. 
The values of 20% was defined after different tests were conducted using different thresholds ranging 
between 5% and 30% of the maximum amplitude; we found that this value provided the best results.  

Overall, this method has being proven to be more stable for monthly data, compared to an approach 
based on sudden LAI changes [8]. It also should be noted that due to the lack of daily data for the LAI 
we were unable to use other methods used in previous studies based on the daily LAI variability [8].  

In order to analyse changes in the growing season, we mask out regions where there are small 
changes in LAI over the year (e.g., evergreen forests and mixed forest with a small deciduous 
component). Therefore, all grid points where the difference between the maximum and minimum LAI 
amplitude is less than 0.5 are ignored in this analysis.  

Considering every grid cell (x,y) we calculated a critical threshold value (CTx,y) above which we 
assume the plants to be photosynthetically active:  

( ), , , ,
min max minCT 0.2x y x y x y x yLAI LAI LAI= + × −  (1)
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where ,

min
x yLAI  and ,

max
x yLAI  represent the minimum and maximum LAI over one year for the grid cell 

(x,y). This procedure was repeated on each grid cell and for each year for any given CMIP5 model. 
The length of the growing season was then calculated as the number of months with a value above this 
threshold; the onset is the first month above that value and the dormancy is the last. Since naturally 
part of the growing season might occur after the end of the year [88], we included the first three 
months of the next year in the calculations of the dormancy. Hence the growing season offset can 
occur on of the following year, having a DOY (day of year) higher than 365. 

Finally, mean length, onset and dormancy were calculated as the average over the whole time 
period. It should be noted that, even when calculated monthly, all results are presented as days; we 
retrieved the daily values from the monthly data by multiplying all monthly results by the number of 
days within the given month.  

The temporal changes in the mean annual LAI and GSL were estimated by the linear trend value 
obtained from a least squares fit line computed for period 1986–2005 of satellite and model data. 

In order to quantify the mismatch between models and data, we calculate the root mean square errors 
(RMSE) and the spatial correlation coefficient between each model and the satellite observations.  

3. Results 

3.1. Mean Leaf Area Index (LAI) 

In Figure 1 we present the mean annual LAI (upper panel), the mean annual land precipitation 
(middle panel), and the mean annual surface temperature (bottom panel) for each model for the period 
1986–2005, with the corresponding interannual variability (IAV) and trends. Considering the x-axis of 
the temperature, models falling at the left of observations (CRU, [89]) indicate a cold bias while 
models at the right of the reference data have a warm bias. On the y-axis models above the 
observations have a stronger trend than observations, while the models below the reference value show 
a lower trend. The same consideration is also valid for the precipitation, namely models falling at the 
left of observations (CRU) indicate a dry bias (wet bias when falling at the right), while on the y axis 
models below the observations have a stronger drying trend than observations.  

It should also be noted that, to be consistent with LAI, we show the precipitation and temperature 
only over the land points of the Northern Hemisphere. Finally, we selected CRU as reference data for 
the validation of climatic variables since it has been used as input data in the offline simulations [90]. 

The evaluation of the simulated precipitation and temperature is needed to assess whether any bias 
in the simulated LAI can be related to poor performance of the ESMs at reproducing physical 
variables, or is mainly due to the poor representation of some biogeochemical processes in the land 
surface models of ESMs. 

Looking at the LAI (Figure 1), in general, except CanESM2 and INMCM4, all the models 
overestimate the mean annual LAI over the Northern Hemisphere. The poorest performance has been 
found in GFDL-EMS2G, which shows a mean value of 2.7, much larger than the reference value 
(0.83); all the other models show a mean annual LAI ranging from 1.2 and 1.7. Conversely, the trends 
are well captured by quite a few models; specifically, many models are clustered around the reference 
value, and, according to the observations, all the models show a greening in the last 20 years. The only 
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far outlier is BNU-ESM, having a positive trend 6 times larger than the observed value. The 
interannual variability is in general well captured by most of the models, although an overestimation of 
the year-to-year variability is found for a few models; the exceptions are CanESM2 and  
MPI-ESM-MR, which show an interannual variability slightly lower than LAI3g. Also, in this case, 
BNU-ESM is the only outlier in reproducing the IAV, having a year-to-year variability much larger 
than the reference value. 

Figure 1. The x-axis shows the observed and simulated mean annual leaf area index (LAI) 
(top), annual land precipitation (middle), and mean annual surface temperature over land 
(bottom). The y-axis shows the temporal trend, while the colorbar reports the interannual 
variability as computed from the annual standard deviation. 
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Figure 1. Cont. 

 

The large bias found in BNU-ESM could be related in some way to the strong wet bias that this 
model has in reproducing the observed precipitation. Specifically, whilst the mean annual precipitation 
as reported by CRU data is 520 mm/yr, BNU-ESM shows a mean value of 802 mm/yr. However, it 
should also be noted that, except CanESM2, all the other models also have a wet bias.  

The wet bias found in all the CMIP5 ESM could explain the LAI overestimation: in fact the best 
agreement between observed and simulated LAI is found for CanEMS2, this being the only model 
without a wet bias. Although in the boreal and Arctic region the temperature is the main limiting factor 
for the carbon assimilation, at mid-latitudes the precipitation plays a pivotal role through its control on 
the soil moisture [91,92].  

The precipitation trends in general are well reproduced by the models, being all scattered around the 
reference data and all showing a wettening over the last 20 years. The exceptions are INMCM4, which 
does not show any trend in the land precipitation and GFDL-ESM2G, which has a wet bias two times 
larger than CRU. The interannual variability of the reference data is about 85 mm/yr and only 
INMCM4, IPSL-CM5A-MR, GFDL-ESM2G and MIROC-ESM well reproduce this value, while 
CanESM2 (~80 mm/yr), NorESM1-ME (~80 mm/yr) and BCC-CSM1 (75 mm/yr) have a slightly 
lower IAV and the remaining models show a larger IAV. It is noteworthy that MPI-ESM-MR has a 
IAV two times larger than the reference data. 

Looking at the temperature, all the models are clustered around the reference data and only 
HadGEM2-CC (cold bias) and MIROC-ESM (warm bias) show a bias greater than 1.5 °C. In addition, 
all the models predict a warming in the Northern Hemisphere during the last 20 years; the weaker 
trends have been found in HadGEM2-CC and INMCM4 being about 4 times smaller than the one 
reported by CRU. The observed temperature interannual variability is about 0.8 °C and only INMCM4 
and MIROC-ESM have a similar IAV; all the other models show a larger IAV than CRU with 
NorESM1-ME having an IAV of about 1 °C.  

Although models in general show good skills in reproducing the observed climate, we would highlight 
that this agreement in the mean values over a large region could arise from a compensation between 
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overestimation in some points of the domain and underestimation in other points [85]. This suggests that to 
perform an exhaustive model validation we should look at the spatial patterns (e.g., maps).  

For this reason in Figure 2 we show the spatial distribution of the mean annual LAI in the Northern 
Hemisphere as calculated from the CMIP5 ESMs and observed by satellite over the period 1986–2005. 
Results are projected over a stereographic projection from the North Pole, with the latitude ranging 
from 30°N to 90°N.  

Figure 2. Spatial distribution of mean annual leaf area index (LAI) as simulated by 11 Earth 
System Models (ESMs) and observed by satellite over the period 1986–2005 in the Northern 
Hemisphere (30°–90°N). The value in the box represents the spatial correlation between 
modelled and satellite values. 

 

The observed spatial pattern of LAI is characterized by a wide maximum over Northern America 
and by a negative gradient extending from central Europe to Northern-Eastern Asia, with a broad 
minimum in the Tibetan plateau due to the sparse vegetation. Although there is an overall 
overestimation by most of the CMIP5 models, 10 out of 11 models correctly reproduce this pattern: in 
particular CESM1-BGC, IPSL-CM5A-MR, and NorESM1-ME show a very good agreement with 
observations in terms of locations of the maximum and minimum values, as well as fairly simulating 
the gradient over the Eurasian region. This is confirmed by the relatively high value (>0.6) of the 
spatial correlation computed between the models and the reference data. Conversely, GFDL-ESM2G is 
not able to reproduce this spatial pattern, and LAI values above 5 are simulated over the whole North 
America and Asia; for this reason this model exhibits the lowest spatial correlation (0.21). It should be 
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noted that, since ESMs generate their own climate, there is no reason to expect models and 
observations to agree on the phasing of interannual variations [85]; for this reason we did not account 
the RMSE for the mean annual LAI. 

The seasonal amplitude patterns show large disagreement between the models and the satellite data 
(Figure 3). Some models (e.g., BNU-ESM and MIROC-ESM) clearly overestimate the mean 
amplitude, which is particularly evident over the whole North America and Eurasia. Other models 
(e.g., CESM1-BGC, HadGEM2-CC, MPI-ESM-MR, and NorESM1-ME) show a smaller seasonality 
than satellite data, while INMCM4, CanESM2 and BCC-CSM1 perform better than the rest of the 
models in reproducing the satellite-derived observations. The RMSE, indicating the mean error of the 
models in reproducing a given variable, suggests that CanESM2 has the lowest error: in fact this model, 
albeit it slightly underestimates the seasonal amplitude over the Russia, has the correct magnitude for the 
observed seasonal amplitude. The same considerations are also valid for IPSL-CM5A-MR, INMCM4 
and BCC-CSM1 which show a RMSE of 1.1. Conversely, BNU-ESM and MIROC-ESM show a larger 
seasonal amplitude than the satellite data, therefore they have high RMSE values.  

Figure 3. Leaf area index (LAI) Seasonal amplitude as simulated by 11 Earth System 
Models (ESMs) and satellite observations for the Northern Hemisphere (30°–90°N). Spatial 
correlation and root mean square errors between the respective model and observations are 
given in the white box. 

 

The spatial correlation, indicating how well models reproduce the observed spatial pattern, confirm that 
CanESM2, INMCM4 overperform the spatial pattern of the seasonal amplitude compared to other models.  
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3.2. Growing Season  

Figure 4 displays the spatial distribution of the mean onset dates of green-up as calculated from the 
CMIP5 ESMs and satellite observation for the period 1986–2005. As expected the satellite data show 
that the mean green-up date is progressively delayed with increasing latitude and increasing 
continentally [93]. The latest dates of green-up occur in northern Siberia, northern Canada, and over 
the Tibetan Plateau, owing to low temperatures.  

The growing season onset derived from CMIP5 ESMs shows that quite a few models do correctly 
reproduce the observed spatial pattern, as confirmed by the relatively high spatial correlation (>0.5). 
The exceptions are BCC-CSM1 who has some patchy areas of agreement with satellite data and 
HadGEM2-CC who has an earlier onset in the whole Arctic area than in the temperate regions. In the 
latter case, the wrong pattern leads also to a negative correlation (−0.13).  

Figure 4. Mean growing season onset (day) as simulated by 11 Earth System Models 
(ESMs) and satellite observations over the Northern Hemisphere (30°–90°N). For each 
model we masked out all the grid points where the seasonal amplitude is less than 0.5 (see 
Figure 3). In the box the value of root mean square error (in days) and spatial correlation, 
as computed from mean annual data, are presented for each model against the observations. 

 

The models that correctly reproduce the green-up spatial pattern show an overestimation of the 
onset day, namely these models generally predict later onset values, particularly over the boreal forests 
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of Siberia and Northern America. This leads to the large RMSE values found for the onset in most of 
the models, ranging from 24 to 38 days.  

Considering GFDL-ESM2G, this model shows a larger onset date in the few “non-masked” grid 
points (Figure 4), while a large area of Eurasia and Northern America shows a seasonal amplitude less 
than 0.5 (Figure 3). This suggests a problem in the initialization of the vegetation during the spin up 
phase: in fact the GFDL land model only allows coniferous trees to grow in cold climates, i.e., 
deciduous trees and grass do not grow in these cold regions. As a result, coniferous trees are 
established in areas where there should be tundra or cold deciduous trees, and therefore the seasonal 
amplitude is lower than expected.  

Satellite data shows that the dates of vegetation dormancy (Figure 5) occur in reverse order of the 
green-up onset, namely the green-up wave progresses northwards and dormancy wave progresses 
southwards [93]. Considering all the 11 ESMs only BNU-ESM, INMCM4, GFDL-ESM2G, and 
CanESM2 have a dormancy distribution similar to the observed pattern, the spatial correlation being 
larger than 0.4. The remaining models have some patchy area of agreement, mainly over Europe and 
the temperate region of North America, while we found relevant problems over the whole Arctic area 
in HadGEM2-CC, IPSL-CM5A-MR and MPI-ESM-MR, with an offset occurring after DOY 365.  

Figure 5. Mean growing season dormancy (day) as simulated by 11 Earth System Models 
(ESMs) and satellite observations over the Northern Hemisphere (30°–90°N). For each 
model we masked out all the grid points where the seasonal amplitude is less than 0.5 (see 
Figure 3). In the box the value of root mean square error (in days) and spatial correlation, 
as computed from mean annual data, are presented for each model against the observations. 
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In these regions, where the dominant vegetation is composed by boreal deciduous forest, modelled 
dormancy can happen after the end of the year (DOY higher than 365). However, the snow corrupts the 
satellite signal in those months and this partially explains why the errors are large in the dormancy date. 

This is particularly evident in IPSL-CM5A-MR that shows a dormancy date around  
February–March of the new year over the whole Arctic area, while satellite data shows that the offset 
occurs 5–6 months before. This explains the large RMSE (82 days) found in this model.  

Although MIROC-ESM does not show the highest spatial correlation due to a few area of 
disagreement mainly located in Alaska, it shows one of the lower RMSE (27 days); the other models 
have errors ranging between 26 days (BCC-CSM1) and almost 3 months (IPSL-CM5A-MR). 
Compared to other CMIP5 models, GFDL-ESM2G has a smaller RMSE than the average. However it 
should be noted that it has been computed considering only a few grid points, due to the incorrect 
representation of the seasonal amplitude. 

Figure 6. Mean growing season length (days) for 11 Earth System Models (ESMs) and 
satellite observations over the Northern Hemisphere (30°–90°N). For each model we 
masked out all the grid points where the seasonal amplitude is less than 0.5 (see Figure 3). 
In the box the value of root mean square error (in days) and spatial correlation, as 
computed from mean annual data, are presented for each model against the observations. 

 

Looking at the satellite data, the growing season length (Figure 6) is found to increase dramatically 
with decreasing latitude [93]. It is the shortest in central and eastern Siberia along the Arctic coast, 
with a duration of only 4 months. In contrast, most of Europe, Eastern China and Southern North 
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America have long growing seasons. The growing season length shows a good agreement between 
satellite data and models, although individual models like IPSL-CM5A-MR, and HadGEM2-CC still 
exhibit large errors in reproducing the observed spatial pattern. 

Specifically, the best results are found in BNU-ESM, INMCM4, being the correlation 
systematically greater than 0.6. Besides, in the few grid points covered by deciduous forests  
GFDL-ESM2G shows a good agreement with satellite GSL and this explains the relative high 
correlation and low RMSE compared to other ESMs. Consistent with previous results, HadGEM2-CC 
shows a negative correlation, indicating the inability of this model to reproduce the observed spatial 
variability. In addition HadGEM2-CC and IPSL-CM5A-MR also show the highest RMSE for the 
GSL, the error being more than 2 times larger than the lowest RMSE found in CanESM2.  

3.3. Temporal Trends 

Quite a few models predict an overall increase of LAI with time in most of the Northern 
Hemisphere, which is consistent with the satellite observations (Figure 7) which show a greening over 
the whole Eurasia and almost no negative trend in the whole Northern Hemisphere, with a small 
exception over western North America and few locations in the Eurasian boreal forest.  

Figure 7. Observed and simulated Leaf Area Index (LAI) trends (%) computed over the 
period 1986-2005 for 11 Earth System Models (ESMs) and satellite observations over the 
Northern Hemisphere (30°–90°N). For each model we masked out all the grid points where 
the seasonal amplitude is less than 0.5 (see Figure 3). The value in the box represents the 
spatial correlation between modelled and satellite data. 
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From the whole compendium, BNU-ESM, GFDL-ESM2G, HadGEM2-CC and NorESM1-ME 
display the highest increase in LAI (see also Figure 1), mostly over the eastern coast of North America, 
Europe and the boreal forest of Asia. IPSL-CM5A-MR, MIROC-ESM, BCC-CSM1 and INMCM4 
have an intermediate signal with the increase shown over the same regions, and some patchy areas 
where LAI decreased. We found that none of the models were able to reproduce the correct spatial 
pattern, the spatial correlation being close to 0 for almost all the models, except MIROC-ESM, which 
shows a positive correlation of 0.15. 

The models also show a general increase in the growing season length, with patchy areas where it 
decreases (Figure 8). It is clear that from the 11 ESMs, those that perform better at calculating the 
growing season (both on the onset and dormancy) and LAI also do better for the trends, despite there 
being no spatial correlation between CMIP5 models and satellite data.  

Figure 8. Observed and simulated Growing Season Length (GSL) trends (days/year) 
computed over the period 1986–2005 for 11 CMIP5 ESMs and satellite observations over 
the Northern Hemisphere (30°–90°N). For each model we masked out all the grid points 
where the seasonal amplitude is less than 0.5 (see Figure 3). The value in the box 
represents the spatial correlation between modelled and satellite data. 
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4. Discussion 

Results show that all coupled models correctly reproduce the spatial pattern of LAI (Figure 2), 
although an overall overestimation is found (Figure 1). GFDL-ESM2G clearly shows a strong 
overestimation over the Northern Hemisphere. Such overestimation in boreal forest is related to the 
substitution of tundra with coniferous forests; this result is supported by the low seasonal amplitude 
found over the whole Northern region of Eurasia.  

Table 2 reports the comparison of simulated LAI and the leaf phenology, averaged over the whole 
domain of interest, against satellite observations. 

Table 2. Average Leaf Area Index (LAI), onset, dormancy and growing season length average 
for the Northern Hemisphere for each model and satellite observations. The values for 
dormancy and length based on Gross Primary Production (GPP) are presented in brackets. 

Model LAI Onset Dormancy Length 
BCC-CSM1 1.54 102 304 (274) 203 (146) 
BNU-ESM 1.75 109 323 (280) 214 (148) 
CanESM2 0.80 140 318 (295) 178 (149) 

CESM1-BGC 1.20 109 343 (305) 233 (190) 
GFDL-ESM2G 2.70 131 330 (304) 199 (152) 
HadGEM2-CC 1.17 115 325 (279) 210 (132) 

INMCM4 1.00 106 329 (289) 223 (164) 
IPSL-CM5A-MR 1.68 121 370 (276) 249 (131) 

MIROC-ESM 1.66 124 307 (276) 183 (130) 
MPI-ESM-MR 1.35 121 347 (274) 227 (147) 
NorESM1-ME 1.30 109 342 (303) 219 (186) 

LAI3g 0.83 111 295 184 

Looking at Table 2, it is clear that all the models overestimate not only the average LAI (except 
CanESM2), but also the mean dormancy and length of the growing season (except CanESM2 and 
MIROC-ESM), while the onset shows much agreement between model means and observations  
(Table 2). Satellite LAI average for the Northern Hemisphere is 0.83 while LAI from the models varies 
between 0.8 to 2.7. Growing season onset was earlier in 5 out of 11 models, while dormancy came 
between 9 to 75 days later in the models.  

However, when the dormancy period is calculated based on the Gross Primary Production (GPP) 
the modelled values become much closer to the satellite values, with an average offset occurring at  
287 ± 13 days, very similar to the 295 days from the satellite data. In addition, the RMSE shows a 
noticeable decrease when compared to results of Figure 5. Besides, looking at the spatial pattern, when 
the offset is computed using the GPP instead of the LAI, all the models show a geographical 
distribution very similar to the observations (Figure 9). This is confirmed by an increase in the spatial 
correlations found in 7 out of 11 models compared to results of Figure 5. These results suggest that the 
leaves in the models remain for longer than they should (discussed later). 
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Figure 9. Mean growing season dormancy (day) as simulated by 11 Earth System Models 
(ESMs) and satellite observations over the Northern Hemisphere (30°–90°N) computed 
using the Gross Primary Production (GPP). For each model we masked out all the grid 
points where the Leaf Area Index (LAI) seasonal amplitude is less than 0.5 (see Figure 3). 
In the box the value of root mean square error (in days) and spatial correlation, as 
computed from mean annual data, are presented for each model against the observations.  

 

Although the wet bias found in most of the analysed CMIP5 models could explain the positive bias 
in LAI, this overestimation of the mean LAI is consistent with results from the uncoupled models 
(Table 3), suggesting that it is unlikely that differences in climate in the coupled models are solely 
responsible for this positive bias. This general overestimation could also be explained by a 
combination of underestimation of observed LAI, likely due to a saturation of satellite instrumentation, 
particularly on areas with dense vegetation, and by missing parameterizations of disturbances in the 
models (e.g., pollution, insect attack, nutrient limitation, grazing, fire dynamics), which leads to a 
larger amount of carbon stored in the biomass, which, in turn, leads to a larger LAI. The combination 
of these two effects explains why we found a relevant overestimation of simulated LAI in both coupled 
and uncoupled models. 

The geographical pattern of average LAI is also similar between coupled and uncoupled 
models [73]. The overestimation of LAI is found consistently over the boreal forest (55°N) when 
compared to the satellite observations, with better agreement over areas with scarce vegetation. When 
comparing models with the same vegetation model (TRIFFID vs. HADGEM2-CC, ORCHIDEE vs. 
IPSL-CM5A-MR and CLM vs. NorESM1 or CESM1-BGC) there are little differences in the distribution 
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of LAI, suggesting that climatic variations in the coupled models are less important in controlling the 
distribution of LAI than having the correct vegetation distribution and parameterizations.  

The onset patterns are similar among all coupled and uncoupled models, with the latest onset 
occurring over the boreal region. The similarities are even stronger over the dormancy where all 
models display a general overestimation over the boreal region, possibly explained by the late leaf 
shed in all models [94].  

These results suggest that both coupled and uncoupled models predict a later dormancy (day) and a 
longer growing season length in comparison to satellite observation (Table 3). It seems that leaves in 
the models remain for longer than they should. However the late dormancy is not in line with the 
vegetation photosynthetic activity: in fact, when the same methodology to calculate the end of the 
photosynthetic active period was applied to the gross primary productivity (GPP), we found that the 
dormancy began at 277 ± 7 days in the uncoupled models and 287 ± 13 days in case of CMIP5 models, 
which is remarkably earlier than previously predicted by LAI, and much closer to the observed value 
of 295 days. It is evident that all models are keeping inactive leaves for longer than they should, which 
does not have any impact on the carbon cycle but could potentially modify surface radiation budget 
and turbulent fluxes, affecting therefore the PBL dynamics, which in turn could lead to potential bias 
in lower atmospheric dynamics simulated by ESMs. In addition to those ESMs having an interactive 
tropospheric chemistry component, the presence of inactive leaves could modify the deposition fluxes 
that strongly depend on the area of the canopy [11]. Conversely, the longer offset simulated by offline 
models does not affect simulation results since the climate is provided as input data and the feedbacks 
between the land surface and the atmosphere are not taken into account. 

Table 3. Comparison of coupled and uncoupled ensemble means of Leaf Area Index (LAI) 
and phenology averaged over the Northern Hemisphere (30°–90°N).  

  LAI Onset Dormancy Length 
Uncoupled 1.55 ± 0.45 131 ± 10 339 ± 20 (277±7) 208 ± 25 (137±20) 
Coupled 1.47 ± 0.51 117 ± 12 331 ± 19 (287±13) 214 ± 22 (152±20) 
LAI3g 0.83 111 295 184 

Looking at the LAI trends, all the coupled models show a clear greening over the whole Northern 
America and Eurasia, consistent with satellite data, while not all the offline models show the same 
pattern over the high latitudes of the Northern Hemisphere. Considering all the ESMs, the greening of 
the high latitudes is likely driven by positive temperature trend (Figure 1) but in some of the offline 
models we observe a browning over the same region, suggesting that offline modelled LAI is also 
sensitive to moisture changes, as most of the browning occurs over areas where precipitation shows a 
decrease (not shown).  

The previous similarities between coupled and uncoupled models, similar geographical distribution 
of LAI with higher values than the satellite data, and an extended growing season mostly driven by a 
later dormancy all suggests that the correct initialization, distribution, and parameterization of 
vegetation in the models is the most important feature in the correct representation of LAI. 
Nevertheless climatic variables, temperature in particular, have proven to be the main drivers of 
changes over time [95].  
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5. Conclusions 

We compared LAI as simulated by 11 Earth-System Models against satellite data and uncoupled 
models [73], for the Northern Hemisphere during the 1986-2005 period. We compared the mean 
annual LAI, the spatial pattern of LAI and the onset, dormancy and length of the growing season. Our 
results show that models consistently overestimate the mean value of LAI, although considering the 
error of the reference data estimated by comparing the satellite data with ground measurements the 
model-data misfit is significantly reduced. In addition models have an increased growing season, 
mostly due to a later dormancy, compared to the satellite data. This is consistent with the finding on 
the uncoupled models.  

We conclude that validating LAI in each model against satellite observations should be a 
fundamental step for all modelling groups. This is essential since LAI is a fundamental variable in all 
models, required to correctly calculate the hydrological, energetic and carbon fluxes. 
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