29 research outputs found

    Origin and Evolution of GALA-LRR, a New Member of the CC-LRR Subfamily: From Plants to Bacteria?

    Get PDF
    The phytopathogenic bacterium Ralstonia solanacearum encodes type III effectors, called GALA proteins, which contain F-box and LRR domains. The GALA LRRs do not perfectly fit any of the previously described LRR subfamilies. By applying protein sequence analysis and structural prediction, we clarify this ambiguous case of LRR classification and assign GALA-LRRs to CC-LRR subfamily. We demonstrate that side-by-side packing of LRRs in the 3D structures may control the limits of repeat variability within the LRR subfamilies during evolution. The LRR packing can be used as a criterion, complementing the repeat sequences, to classify newly identified LRR domains. Our phylogenetic analysis of F-box domains proposes the lateral gene transfer of bacterial GALA proteins from host plants. We also present an evolutionary scenario which can explain the transformation of the original plant LRRs into slightly different bacterial LRRs. The examination of the selective evolutionary pressure acting on GALA proteins suggests that the convex side of their horse-shoe shaped LRR domains is more prone to positive selection than the concave side, and we therefore hypothesize that the convex surface might be the site of protein binding relevant to the adaptor function of the F-box GALA proteins. This conclusion provides a strong background for further functional studies aimed at determining the role of these type III effectors in the virulence of R. solanacearum

    Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome

    Get PDF
    International audienceThe biological significance of Archaea in the human gut microbiota is largely unclear. We recently reported genomic and biochemical analyses of the Methanomassiliicoccales, a novel order of methanogenic Archaea dwelling in soil and the animal digestive tract. We now show that these Methanomassiliicoccales are present in published microbiome data sets from eight countries. They are represented by five Operational Taxonomic Units present in at least four cohorts and phylogenetically distributed into two clades. Genes for utilizing trimethylamine (TMA), a bacterial precursor to an atherosclerogenic human metabolite, were present in four of the six novel Methanomassiliicoccales genomes assembled from ELDERMET metagenomes. In addition to increased microbiota TMA production capacity in long-term residential care subjects, abundance of TMA-utilizing Methanomassiliicoccales correlated positively with bacterial gene count for TMA production and negatively with fecal TMA concentrations. The two large Methanomassiliicoccales clades have opposite correlations with host health status in the ELDERMET cohort and putative distinct genomic signatures for gut adaptation

    Rickettsia Phylogenomics: Unwinding the Intricacies of Obligate Intracellular Life

    Get PDF
    BACKGROUND: Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular alpha-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs) of open reading frames (ORFs) will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs) from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs). METHODOLOGY/PRINCIPAL FINDINGS: We present 1823 representative (no gene duplications) and 259 non-representative (at least one gene duplication) rickettsial OGs. While the highly reductive (approximately 1.2 MB) Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group), TG (typhus group), TRG (transitional group), and SFG (spotted fever group) rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions. CONCLUSION/SIGNIFICANCE: Collectively, we determined the relative conservation and distribution of 14354 predicted ORFs from 10 rickettsial genomes across robust phylogeny estimation. The data, available at PATRIC (PathoSystems Resource Integration Center), provide novel information for unwinding the intricacies associated with Rickettsia pathogenesis, expanding the range of potential diagnostic, vaccine and therapeutic targets

    Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii

    Get PDF
    Coxiella burnetii is an obligate intracellular bacterial pathogen responsible for acute and chronic Q fever. This bacterium harbors a type IV secretion system (T4SS) highly similar to the Dot/Icm of Legionella pneumophila that is believed to be essential for its infectivity. Protein substrates of the Coxiella T4SS are predicted to facilitate the biogenesis of a phagosome permissive for its intracellular growth. However, due to the lack of genetic systems, protein transfer by the C. burnetii Dot/Icm has not been demonstrated. In this study, we report the identification of 32 substrates of the C. burnetii Dot/Icm system using a fluorescence-based Ξ²-lactamase (TEM1) translocation assay as well as the calmodulin-dependent adenylate cyclase (CyaA) assay in the surrogate host L. pneumophila. Notably, 26 identified T4SS substrates are hypothetical proteins without predicted function. Candidate secretion substrates were obtained by using (i) a genetic screen to identify C. burnetii proteins interacting with DotF, a component of the T4SS, and (ii) bioinformatic approaches to retrieve candidate genes that harbor characteristics associated with previously reported substrates of the Dot/Icm system from both C. burnetii and L. pneumophila. Moreover, we have developed a shuttle plasmid that allows the expression of recombinant proteins in C. burnetii as TEM fusion products. Using this system, we demonstrated that a Dot/Icm substrate identified with L. pneumophila was also translocated by C. burnetii in a process that requires its C terminus, providing direct genetic evidence of a functional T4SS in C. burnetii
    corecore