66 research outputs found

    Plasmid-Mediated Transmission of KPC-2 Carbapenemase in Enterobacteriaceae in Critically III Patients

    Get PDF
    Carbapenem-resistant Enterobacteriaceae (CRE) cause health care-associated infections worldwide, and they are of severe concern due to limited treatment options. We report an outbreak of KPC-2-producing CRE that was caused by horizontal transmission of a promiscuous plasmid across different genera of bacteria and hospitals in Germany. Eleven isolates (8 Citrobacter freundii, 2 Klebsiella oxytoca, and 1 Escherichia coli) were obtained from seven critically ill patients during the six months of the outbreak in 2016. One patient developed a CRE infection while the other six patients were CRE-colonized. Three patients died in the course of the hospital stay. Six of the seven patients carried the same C. freundii clone; one K. oxytoca clone was found in two patients, and one patient carried E. coli and C. freundii. Molecular analysis confirmed the presence of a conjugative, blaKPC-2-carrying 70 kb-IncN plasmid in C. freundii and E. coli and an 80 kb-IncN plasmid in K. oxytoca. All transconjugants harbored either the 70 or 80 kb plasmid with blaKPC-2, embedded within transposon variant Tn4401g. Whole genome sequencing and downstream bioinformatics analyses of all plasmid sequences showed an almost perfect match when compared to a blaKPC-2-carrying plasmid of a large outbreak in another German hospital two years earlier. Differences in plasmid sizes and open reading frames point to the presence of inserted mobile genetic elements. There are few outbreak reports worldwide on the transmission of blaKPC-2-carrying plasmids across different bacterial genera. Our data suggest a regional and supraregional spread of blaKPC-2-carrying IncN-plasmids harboring the Tn4401g isoform in Germany.</p

    The Effects of 5-Hydroxytryptophan in Combination with Different Fatty Acids on Gastrointestinal Functions: A Pilot Experiment

    Get PDF
    Background. Fat affects gastric emptying (GE). 5-Hydroxythryptophan (5-HTP) is involved in central and peripheral satiety mechanisms. Influence of 5-HTP in addition to saturated or monounsaturated fatty acids (FA) on GE and hormone release was investigated. Subjects/Methods. 24 healthy individuals (12f : 12m, 22-29 years, BMI 19-25.7 kg/m(2)) were tested on 4 days with either 5-HTP + short-chain saturated FA (butter), placebo + butter, 5-HTP + monounsaturated FA (olive oil), or placebo + olive oil in double-blinded randomized order. Two hours after FA/5-HTP or placebo intake, a C-13 octanoid acid test was conducted. Cortisol, serotonin, cholecystokinin (CCK), and ghrelin were measured, as were mood and GE. Results. GE was delayed with butter and was normal with olive (P < 0.05) but not affected by 5-HTP. 5-HTP supplementation did not affect serotonin levels. Food intake increased plasma CCK (F = 6.136; P < 0.05) irrespective of the FA. Ghrelin levels significantly decreased with oil/5-HTP (F = 9.166; P < 0.001). The diurnal cortisol profile was unaffected by FA or 5-HTP, as were ratings of mood, hunger, and stool urgency. Conclusion. Diverse FAs have different effects on GE and secretion of orexigenic and anorexigenic hormones. Supplementation of 5-HTP had no effect on plasma serotonin and central functions. Further studies are needed to explain the complex interplay

    Serotonin receptor type 3 antagonists improve obesity-associated fatty liver disease in mice

    Get PDF
    ABSTRACT Obesity is a major cause for nonalcoholic fatty liver disease (NAFLD). Previous studies suggested that alterations in intestinal motility and permeability contribute to the development of NAFLD. Serotonin and serotonin receptor type 3 (5-HT 3 R) are key factors in the regulation of intestinal motility and permeability. Therefore, we studied the effect of the 5-HT 3 R antagonists tropisetron and palonosetron on the development of NA-FLD in leptin-deficient obese mice. Four-week-old ob/ob mice and lean controls were treated for 6 weeks orally with tropisetron or palonosetron at 0.2 mg/kg per day. We determined markers of liver damage and inflammation, portal endotoxin levels, and duodenal concentrations of serotonin, serotoninreuptake transporter (SERT), occludin, and claudin-1. Tropisetron treatment significantly reduced liver fat content (Ϫ29%), liver inflammation (Ϫ56%), and liver cell necrosis (Ϫ59%) in ob/ob mice. The beneficial effects of tropisetron were accompanied by a decrease in plasma alanine aminotransferase and portal vein plasma endotoxin levels, an attenuation of enhanced MyD88 and tumor necrosis factor-␣ mRNA expression in the liver, and an increase of tight junction proteins in the duodenum. Tropisetron treatment also caused a reduction of elevated serotonin levels and an increase of SERT in the duodenum of ob/ob mice. Palonosetron had similar effects as tropisetron with regard to the reduction of liver fat and other parameters. Tropisetron and palonosetron are effective in attenuating NAFLD in a genetic mouse model of obesity. The effect involves the intestinal nervous system, resulting in a reduction of endotoxin influx into the liver and subsequently of liver inflammation and fat accumulation

    MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

    Full text link
    MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics

    Direct and plant community mediated effects of management intensity on annual nutrient leaching risk in temperate grasslands

    Get PDF
    Grassland management intensity influences nutrient cycling both directly, by changing nutrient inputs and outputs from the ecosystem, and indirectly, by altering the nutrient content, and the diversity and functional composition of plant and microbial communities. However, the relative importance of these direct and indirect processes for the leaching of multiple nutrients is poorly studied. We measured the annual leaching of nitrate, ammonium, phosphate and sulphate at a depth of 10 cm in 150 temperate managed grasslands using a resin method. Using Structural Equation Modeling, we distinguished between various direct and indirect effects of management intensity (i.e. grazing and fertilization) on nutrient leaching. We found that management intensity was positively associated with nitrate, ammonium and phosphate leaching risk both directly (i.e. via increased nutrient inputs) and indirectly, by changing the stoichiometry of soils, plants and microbes. In contrast, sulphate leaching risk was negatively associated with management intensity, presumably due to increased outputs with mowing and grazing. In addition, management intensification shifted plant communities towards an exploitative functional composition (characterized by high tissue turnover rates) and, thus, further promoted the leaching risk of inorganic nitrogen. Plant species richness was associated with lower inorganic nitrogen leaching risk, but most of its effects were mediated by stoichiometry and plant community functional traits. Maintaining and restoring diverse plant communities may therefore mitigate the increased leaching risk that management intensity imposes upon grasslands

    Plasmid-Mediated Transmission of KPC-2 Carbapenemase in Enterobacteriaceae in Critically Ill Patients

    Get PDF
    Carbapenem-resistant Enterobacteriaceae (CRE) cause health care-associated infections worldwide, and they are of severe concern due to limited treatment options. We report an outbreak of KPC-2-producing CRE that was caused by horizontal transmission of a promiscuous plasmid across different genera of bacteria and hospitals in Germany. Eleven isolates (8 Citrobacter freundii, 2 Klebsiella oxytoca, and 1 Escherichia coli) were obtained from seven critically ill patients during the six months of the outbreak in 2016. One patient developed a CRE infection while the other six patients were CRE-colonized. Three patients died in the course of the hospital stay. Six of the seven patients carried the same C. freundii clone; one K. oxytoca clone was found in two patients, and one patient carried E. coli and C. freundii. Molecular analysis confirmed the presence of a conjugative, blaKPC-2-carrying 70 kb-IncN plasmid in C. freundii and E. coli and an 80 kb-IncN plasmid in K. oxytoca. All transconjugants harbored either the 70 or 80 kb plasmid with blaKPC-2, embedded within transposon variant Tn4401g. Whole genome sequencing and downstream bioinformatics analyses of all plasmid sequences showed an almost perfect match when compared to a blaKPC-2-carrying plasmid of a large outbreak in another German hospital two years earlier. Differences in plasmid sizes and open reading frames point to the presence of inserted mobile genetic elements. There are few outbreak reports worldwide on the transmission of blaKPC-2-carrying plasmids across different bacterial genera. Our data suggest a regional and supraregional spread of blaKPC-2-carrying IncN-plasmids harboring the Tn4401g isoform in Germany

    Identification of novel anti-cancer agents by the synthesis and cellular screening of a noscapine-based library

    Get PDF
    53 p.-7 fig.-1 tab.-1 schem.-1 graph. abst.Noscapine is a natural product first isolated from the opium poppy (Papaver somniferum L.) with anticancer properties. In this work, we report the synthesis and cellular screening of a noscapine-based library. A library of novel noscapine derivatives was synthesized with modifications in the isoquinoline and phthalide scaffolds. The so generated library, consisting of fifty-seven derivatives of the natural product noscapine, was tested against MDA-MB-231 breast cancer cells in a cellular proliferation assay (with a Z' > 0.7). The screening resulted in the identification of two novel noscapine derivatives as inhibitors of MDA cell growth with IC50 values of 5 µM and 1.5 µM, respectively. Both hit molecules have a five-fold and seventeen-fold higher potency, compared with that of lead compound noscapine (IC50 26 µM). The identified active derivatives retain the tubulin-binding ability of noscapine. Further testing of both hit molecules, alongside the natural product against additional cancer cell lines (HepG2, HeLa and PC3 cells) confirmed our initial findings. Both molecules have improved anti-proliferative properties when compared to the initial natural product, noscapine.We are also grateful to the Iran National Science Foundation (INSF, grant number 98026465) for financial support of this project and Shahid Beheshti University Research Council for providing facilities of to conduct this study. This work was supported by CSIC PIE 201920E111 (MAO).Peer reviewe

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore