32 research outputs found

    Synergy between TROPOMI sun-induced chlorophyll fluorescence and MODIS spectral reflectance for understanding the dynamics of gross primary productivity at Integrated Carbon Observatory System (ICOS) ecosystem flux sites

    Get PDF
    An accurate estimation of vegetation gross primary productivity (GPP), which is the amount of carbon taken up by vegetation through photosynthesis for a given time and area, is critical for understanding terrestrial–atmosphere CO2 exchange processes and ecosystem functioning, as well as ecosystem responses and adaptations to climate change. Prior studies, based on ground, airborne, and satellite sun-induced chlorophyll fluorescence (SIF) observations, have recently revealed close relationships with GPP at different spatial and temporal scales and across different plant functional types (PFTs). However, questions remain regarding whether there is a unique relationship between SIF and GPP across different sites and PFTs and how we can improve GPP estimates using solely remotely sensed data. Using concurrent measurements of daily TROPOspheric Monitoring Instrument (TROPOMI) SIF (daily SIFd); daily MODIS Terra and Aqua spectral reflectance; vegetation indices (VIs, notably normalized difference vegetation index (NDVI), near-infrared reflectance of vegetation (NIRv), and photochemical reflectance index (PRI)); and daily tower-based GPP across eight major different PFTs, including mixed forests, deciduous broadleaf forests, croplands, evergreen broadleaf forests, evergreen needleleaf forests, grasslands, open shrubland, and wetlands, the strength of the relationships between tower-based GPP and SIFd at 40 Integrated Carbon Observation System (ICOS) flux sites was investigated. The synergy between SIFd and MODIS-based reflectance (R) and VIs to improve GPP estimates using a data-driven modeling approach was also evaluated. The results revealed that the strength of the hyperbolic relationship between GPP and SIFd was strongly site-specific and PFT-dependent. Furthermore, the generalized linear model (GLM), fitted between SIFd, GPP, and site and vegetation type as categorical variables, further supported this site- and PFT-dependent relationship between GPP and SIFd. Using random forest (RF) regression models with GPP as output and the aforementioned variables as predictors (R, SIFd, and VIs), this study also showed that the spectral reflectance bands (RF-R) and SIFd plus spectral reflectance (RF-SIF-R) models explained over 80 % of the seasonal and interannual variations in GPP, whereas the SIFd plus VI (RF-SIF-VI) model reproduced only 75 % of the tower-based GPP variance. In addition, the relative variable importance of predictors of GPP demonstrated that the spectral reflectance bands in the near-infrared, red, and SIFd appeared as the most influential and dominant factors determining GPP predictions, indicating the importance of canopy structure, biochemical properties, and vegetation functioning on GPP estimates. Overall, this study provides insights into understanding the strength of the relationships between GPP and SIF and the use of spectral reflectance and SIFd to improve estimates of GPP across sites and PFTs.</p

    FluorMODleaf: A new leaf fluorescence emission model based on the PROSPECT model

    Get PDF
    A new model of chlorophyll a fluorescence emission by plant leaves, FluorMODleaf, is presented. It is an extension of PROSPECT, a widely used leaf optical properties model that regards the leaf as a pile of N absorbing and diffusing elementary plates. In FluorMODleaf, fluorescence emission of an infinitesimal layer of thickness dx is integrated over the entire elementary plate. The fluorescence source function is based on the excitation spectrum of diluted isolated thylakoids and on the emission spectra of isolated photosystems, PSI and PSII, which are the main pigment-protein complexes involved in the initial stages of photosynthesis. Scattering within the leaf is produced by multiple reflections within and between elementary plates. The input variables of FluorMODleaf are: the number of elementary plates N, also called leaf structure parameter, the total chlorophyll content Cab, the total carotenoid content Ccx, the equivalent water thickness Cw, and the dry matter content Cm (or leaf mass per area), as in the new PROSPECT-5, plus the σII/σI ratio referring to the relative absorption cross section of PSI and PSII, and the fluorescence quantum efficiency of PSI and PSII, τI and τII, that are introduced here as mean fluorescence lifetimes. The model, which considers the reabsorption of emitted light within the leaf, allows good quantitative estimation of both upward and downward apparent spectral fluorescence yield (ASFY) at different excitation wavelengths from 400 nm to 700 nm. It also emphasizes the role of scattering in fluorescence emission by leaves having high chlorophyll content

    The fluorescence explorer (FLEX) mission:imaging spectroscopy in very high spectral resolution

    Get PDF
    The FLuorescence EXplorer (FLEX) mission was selected in 2015, by the European Space Agency, as the 8th ESA Earth Explorer, to be launched in 2025. The key scientific objective of the mission is the quantitative mapping of actual photosynthetic activity of terrestrial ecosystems, at a global scale and with a spatial resolution adequate to resolve land processes associated to vegetation dynamics. To accomplish such objective, the FLEX satellite carries the Fluorescence Imaging Spectrometer (FLORIS). FLEX will fly in tandem with Copernicus Sentinel-3 (same orbit at 815 km, 27 days repeat cycle). Together with FLORIS, the OLCI and SLSTR instruments on Sentinel-3 provide all the necessary information to retrieve the emitted vegetation fluorescence, including compensation for atmospheric effects and the derivation of the additional biophysical information needed to map the spatial and temporal dynamics of vegetation photosynthesis from such global measurements

    Sun-Induced Chlorophyll Fluorescence I: Instrumental Considerations for Proximal Spectroradiometers

    Full text link
    Growing interest in the proximal sensing of sun‐induced chlorophyll fluorescence (SIF) has been boosted by space-based retrievals and up-coming missions such as the FLuorescence EXplorer (FLEX). The European COST Action ES1309 “Innovative optical tools for proximal sensing of ecophysiological processes” (OPTIMISE, ES1309; https://optimise.dcs.aber.ac.uk/) has produced three manuscripts addressing the main current challenges in this field. This article provides a framework to model the impact of different instrument noise and bias on the retrieval of SIF; and to assess uncertainty requirements for the calibration and characterization of state-of-the-art SIF-oriented spectroradiometers. We developed a sensor simulator capable of reproducing biases and noises usually found in field spectroradiometers. First the sensor simulator was calibrated and characterized using synthetic datasets of known uncertainties defined from laboratory measurements and literature. Secondly, we used the sensor simulator and the characterized sensor models to simulate the acquisition of atmospheric and vegetation radiances from a synthetic dataset. Each of the sensor models predicted biases with propagated uncertainties that modified the simulated measurements as a function of different factors. Finally, the impact of each sensor model on SIF retrieval was analyzed. Results show that SIF retrieval can be significantly affected in situations where reflectance factors are barely modified. SIF errors were found to correlate with drivers of instrumental-induced biases which are as also drivers of plant physiology. This jeopardizes not only the retrieval of SIF, but also the understanding of its relationship with vegetation function, the study of diel and seasonal cycles and the validation of remote sensing SIF products. Further work is needed to determine the optimal requirements in terms of sensor design, characterization and signal correction for SIF retrieval by proximal sensing. In addition, evaluation/validation methods to characterize and correct instrumental responses should be developed and used to test sensors performance in operational conditions

    Reduction of structural impacts and distinction of photosynthetic pathways in a global estimation of GPP from space-borne solar-induced chlorophyll fluorescence

    Get PDF
    Quantifying global photosynthesis remains a challenge due to a lack of accurate remote sensing proxies. Solar-induced chlorophyll fluorescence (SIF) has been shown to be a good indicator of photosynthetic activity across various spatial scales. However, a global and spatially challenging estimate of terrestrial gross primary production (GPP) based on satellite SIF remains unresolved due to the confounding effects of species-specific physical and physiological traits and external factors, such as canopy structure or photosynthetic pathway (C-3 or C-4). Here we analyze an ensemble of far-red SIF data from OCO-2 satellite and ground observations at multiple sites, using the spectral invariant theory to reduce the effects of canopy structure and to retrieve a structure-corrected total canopy SIF emission (SIFtotal). We find that the relationships between observed canopy-leaving SIF and ecosystem GPP vary significantly among biomes. In contrast, the relationships between SIFtotal and GPP converge around two unique models, one for C-3 and one for C-4 plants. We show that the two single empirical models can be used to globally scale satellite SIF observations to terrestrial GPP. We obtain an independent estimate of global terrestrial GPP of 129.56 +/- 6.54 PgC/year for the 2015-2017 period, which is consistent with the state-of-the-art data- and process-oriented models. The new GPP product shows improved sensitivity to previously undetected 'hotspots' of productivity, being able to resolve the double-peak in GPP due to rotational cropping systems. We suggest that the direct scheme to estimate GPP presented here, which is based on satellite SIF, may open up new possibilities to resolve the dynamics of global terrestrial GPP across space and time.Peer reviewe

    Sun-induced chlorophyll fluorescence II:Review of passive measurement setups, protocols, and their application at the leaf to canopy level

    Get PDF
    Satellite gravimetry allows for determining large scale mass transport in the system Earth and to quantify ice mass change in polar regions. We provide, evaluate and compare a long time-series of monthly gravity field solutions derived either by satellite laser ranging (SLR) to geodetic satellites, by GPS and K-band observations of the GRACE mission, or by GPS observations of the three Swarm satellites. While GRACE provides gravity signal at the highest spatial resolution, SLR sheds light on mass transport in polar regions at larger scales also in the pre- and post-GRACE era. To bridge the gap between GRACE and GRACE Follow-On, we also derive monthly gravity fields using Swarm data and perform a combination with SLR. To correctly take all correlations into account, this combination is performed on the normal equation level. Validating the Swarm/SLR combination against GRACE during the overlapping period January 2015 to June 2016, the best fit is achieved when down-weighting Swarm compared to the weights determined by variance component estimation. While between 2014 and 2017 SLR alone slightly overestimates mass loss in Greenland compared to GRACE, the combined gravity fields match significantly better in the overlapping time period and the RMS of the differences is reduced by almost 100 Gt. After 2017, both SLR and Swarm indicate moderate mass gain in Greenland

    Teledetection de la fluorescence des couverts vegetaux: temps de vie de la fluorescence chlorophyllienne et fluorescence bleue

    No full text
    SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : T 84305 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Gross Primary Production of a Wheat Canopy Relates Stronger to Far Red Than to Red Solar-Induced Chlorophyll Fluorescence

    No full text
    Sun-induced chlorophyll fluorescence (SIF) is a radiation flux emitted by chlorophyll molecules in the red (RSIF) and far red region (FRSIF), and is considered as a potential indicator of the functional state of photosynthesis in remote sensing applications. Recently, ground studies and space observations have demonstrated a strong empirical linear relationship between FRSIF and carbon uptake through photosynthesis (GPP, gross primary production). In this study, we investigated the potential of RSIF and FRSIF to represent the functional status of photosynthesis at canopy level on a wheat crop. RSIF and FRSIF were continuously measured in the O2-B (SIF687) and O2-A bands (SIF760) at a high frequency rate from a nadir view at a height of 21 m, simultaneously with carbon uptake using eddy covariance (EC) techniques. The relative fluorescence yield (Fyield) and the photochemical yield were acquired at leaf level using active fluorescence measurements. SIF was normalized with photosynthetically active radiation (PAR) to derive apparent spectral fluorescence yields (ASFY687, ASFY760). At the diurnal scale, we found limited variations of ASFY687 and ASFY760 during sunny days. We also did not find any link between Fyield and light use efficiency (LUE) derived from EC, which would prevent SIF from indicating LUE changes. The coefficient of determination ( r 2 ) of the linear regression between SIF and GPP is found to be highly variable, depending on the emission wavelength, the time scale of observation, sky conditions, and the phenological stage. Despite its photosystem II (PSII) origin, SIF687 correlates less than SIF760 with GPP in any cases. The strongest SIF–GPP relationship was found for SIF760 during canopy growth. When canopy is in a steady state, SIF687 and SIF760 are almost as effective as PAR in predicting GPP. Our results imply some constraints in the use of simple linear relationships to infer GPP from SIF, as they are expected to be better predictive with far red SIF for canopies with a high dynamic range of green biomass and a low LUE variation range

    Responses of epidermal phenolic compounds to light acclimation: In vivo qualitative and quantitative assessment using chlorophyll fluorescence excitation spectra in leaves of three woody species

    No full text
    International audienceChlorophyll fluorescence (ChlF) excitation spectra were measured to assess the UV-sunscreen compounds accumulated in fully expanded leaves of three woody species belonging to different chemotaxons, (i.e. Morus nigra L., Prunus mahaleb L. and Lagerstroemia indica L.), grown in different light microclimates. The logarithm of the ratio of ChlF excitation spectra (logFER) between two leaves acclimated to different light microclimates was used to assess the difference in epidermal absorbance (EAbs). EAbs increased with increasing solar irradiance intercepted for the three species. This epidermal localisation of UV-absorbers was confirmed by the removal of the epidermis. It was possible to simulate EAbs as a linear combination of major phenolic compounds (Phen) identified in leaf methanol extracts by HPLC-DAD. Under UV-free radiation conditions, shaded leaves of M. nigra accumulated chlorogenic acid. Hydroxybenzoic acid (HBA) derivatives and hydroxycinnamic acid (HCA) derivatives greatly increased with increasing PAR irradiance under the low UV-B conditions found in the greenhouse. These traits were also observed for the HCA of the two other species. Flavonoid (FLAV) accumulation started tinder low UV-A irradiance, and became maximal in the adaxial epidermis of sun-exposed leaves outdoors. A decrease in the amount of HCA was observed concomitantly to the intense accumulation of FLAV for both leaf sides of the three species. Judging from the logFER, under low UV-B conditions, larger amounts of HCA are present in the epidermis in comparison to FLAV for the three species. Upon transition from the greenhouse to full sunlight outdoors, there was a decrease in leaf-soluble HCA that paralleled FLAV accumulation in reaction to increasing solar UV-B radiation in the three species. In M. nigra, that contains large amounts of HCA, the logFER analysis showed that this decrease occurred in the adaxial epidermis, whereas the abaxial epidermis, which is protected from direct UV-B radiation, continued to accumulate large amounts of HC
    corecore