24 research outputs found

    Unify Markov model for Rational Design and Synthesis of More Safe Drugs. Predicting Multiple Drugs Side Effects

    Get PDF
    The 9th International Electronic Conference on Synthetic Organic Chemistry session Computational ChemistryMost of present mathematical models for rational design and synthesis of new drugs consider just the molecular structure. In the present article we pretend extending the use of Markov Chain models to define novel molecular descriptors, which consider in addition other parameters like target site or biological effect. Specifically, this model takes into consideration not only the molecular structure but the specific biological system the drug affects too. Herein, it is developed a general Markov model that describes 19 different drugs side effects grouped in 8 affected biological systems for 178 drugs, being 270 cases finally. The data was processed by Linear Discriminant Analysis (LDA) classifying drugs according to their specific side effects, forward stepwise was fixed as strategy for variables selection. The average percentage of good classification and number of compounds used in the training/predicting sets were 100/95.8% for endocrine manifestations(18 out of 18)/(13 out of 14); 90.5/92.3% for gastrointestinal manifestations (38 out of 42)/(30 out of 32); 88.5/86.5% for systemic phenomena (23 out of 26)/(17 out of 20); 81.8/77.3% for neurological manifestations (27 out of 33)/(19 out of 25); 81.6/86.2% for dermal manifestations (31 out of 38)/(25 out of 29); 78.4/85.1% for cardiovascular manifestation (29 out of 37)/(24 out of 28); 77.1/75.7% for breathing manifestations (27 out of 35)/(20 out of 26) and 75.6/75% for psychiatric manifestations (31 out of 41)/(23 out of 31). Additionally a Back-Projection Analysis (BPA) was carried out for two ulcerogenic drugs to prove in structural terms the physic interpretation of the models obtained. This article develops a model that encompasses a large number of drugs side effects grouped in specifics biological systems using stochastic absolute probabilities of interaction (Apk (j)) by the first time

    Drugs Repurposing Using QSAR, Docking and Molecular Dynamics for Possible Inhibitors of the SARS-CoV-2 Mpro Protease

    Get PDF
    [Abstract] Wuhan, China was the epicenter of the first zoonotic transmission of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) in December 2019 and it is the causative agent of the novel human coronavirus disease 2019 (COVID-19). Almost from the beginning of the COVID-19 outbreak several attempts were made to predict possible drugs capable of inhibiting the virus replication. In the present work a drug repurposing study is performed to identify potential SARS-CoV-2 protease inhibitors. We created a Quantitative Structure–Activity Relationship (QSAR) model based on a machine learning strategy using hundreds of inhibitor molecules of the main protease (Mpro) of the SARS-CoV coronavirus. The QSAR model was used for virtual screening of a large list of drugs from the DrugBank database. The best 20 candidates were then evaluated in-silico against the Mpro of SARS-CoV-2 by using docking and molecular dynamics analyses. Docking was done by using the Gold software, and the free energies of binding were predicted with the MM-PBSA method as implemented in AMBER. Our results indicate that levothyroxine, amobarbital and ABP-700 are the best potential inhibitors of the SARS-CoV-2 virus through their binding to the Mpro enzyme. Five other compounds showed also a negative but small free energy of binding: nikethamide, nifurtimox, rebimastat, apomine and rebastinib.Universidad de Las AmĂ©ricas (Quito, Ecuador); BIO.TPA.20.03Instituto de Salud Carlos III; PI17/01826Xunta de Galicia; ED431C 2018/4

    Perturbation-Theory Machine Learning (PTML) Multilabel Model of the ChEMBL Dataset of Preclinical Assays for Antisarcoma Compounds

    Get PDF
    [Abstract] Sarcomas are a group of malignant neoplasms of connective tissue with a different etiology than carcinomas. The efforts to discover new drugs with antisarcoma activity have generated large datasets of multiple preclinical assays with different experimental conditions. For instance, the ChEMBL database contains outcomes of 37,919 different antisarcoma assays with 34,955 different chemical compounds. Furthermore, the experimental conditions reported in this dataset include 157 types of biological activity parameters, 36 drug targets, 43 cell lines, and 17 assay organisms. Considering this information, we propose combining perturbation theory (PT) principles with machine learning (ML) to develop a PTML model to predict antisarcoma compounds. PTML models use one function of reference that measures the probability of a drug being active under certain conditions (protein, cell line, organism, etc.). In this paper, we used a linear discriminant analysis and neural network to train and compare PT and non-PT models. All the explored models have an accuracy of 89.19–95.25% for training and 89.22–95.46% in validation sets. PTML-based strategies have similar accuracy but generate simplest models. Therefore, they may become a versatile tool for predicting antisarcoma compounds.Ministerio de Economía y Competitividad; CTQ2016-74881-PMinisterio de Economía y Competitividad; UNLC08-1E-002Ministerio de Economía y Competitividad; UNLC13-13-3503Xunta de Galicia; ED431C 2018/49Xunta de Galicia; ED431D 2017/16Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/23Gobierno Vasco; IT1045-16Instituto de Salud Carlos III; PI17/0182

    A Multi-Objective Approach for Anti-Osteosarcoma Cancer Agents Discovery through Drug Repurposing

    Get PDF
    [Abstract] Osteosarcoma is the most common type of primary malignant bone tumor. Although nowadays 5-year survival rates can reach up to 60–70%, acute complications and late effects of osteosarcoma therapy are two of the limiting factors in treatments. We developed a multi-objective algorithm for the repurposing of new anti-osteosarcoma drugs, based on the modeling of molecules with described activity for HOS, MG63, SAOS2, and U2OS cell lines in the ChEMBL database. Several predictive models were obtained for each cell line and those with accuracy greater than 0.8 were integrated into a desirability function for the final multi-objective model. An exhaustive exploration of model combinations was carried out to obtain the best multi-objective model in virtual screening. For the top 1% of the screened list, the final model showed a BEDROC = 0.562, EF = 27.6, and AUC = 0.653. The repositioning was performed on 2218 molecules described in DrugBank. Within the top-ranked drugs, we found: temsirolimus, paclitaxel, sirolimus, everolimus, and cabazitaxel, which are antineoplastic drugs described in clinical trials for cancer in general. Interestingly, we found several broad-spectrum antibiotics and antiretroviral agents. This powerful model predicts several drugs that should be studied in depth to find new chemotherapy regimens and to propose new strategies for osteosarcoma treatment.Universidad de Las AmĂ©ricas (Quito, Ecuador); ENF.RCA.18.01Gobierno Vasco; IT1045-16)-2016–202

    An Alignment-Free Approach for Eukaryotic ITS2 Annotation and Phylogenetic Inference

    Get PDF
    The ITS2 gene class shows a high sequence divergence among its members that have complicated its annotation and its use for reconstructing phylogenies at a higher taxonomical level (beyond species and genus). Several alignment strategies have been implemented to improve the ITS2 annotation quality and its use for phylogenetic inferences. Although, alignment based methods have been exploited to the top of its complexity to tackle both issues, no alignment-free approaches have been able to successfully address both topics. By contrast, the use of simple alignment-free classifiers, like the topological indices (TIs) containing information about the sequence and structure of ITS2, may reveal to be a useful approach for the gene prediction and for assessing the phylogenetic relationships of the ITS2 class in eukaryotes. Thus, we used the TI2BioP (Topological Indices to BioPolymers) methodology [1], [2], freely available at http://ti2biop.sourceforge.net/ to calculate two different TIs. One class was derived from the ITS2 artificial 2D structures generated from DNA strings and the other from the secondary structure inferred from RNA folding algorithms. Two alignment-free models based on Artificial Neural Networks were developed for the ITS2 class prediction using the two classes of TIs referred above. Both models showed similar performances on the training and the test sets reaching values above 95% in the overall classification. Due to the importance of the ITS2 region for fungi identification, a novel ITS2 genomic sequence was isolated from Petrakia sp. This sequence and the test set were used to comparatively evaluate the conventional classification models based on multiple sequence alignments like Hidden Markov based approaches, revealing the success of our models to identify novel ITS2 members. The isolated sequence was assessed using traditional and alignment-free based techniques applied to phylogenetic inference to complement the taxonomy of the Petrakia sp. fungal isolate

    Gene Prioritization through Consensus Strategy, Enrichment Methodologies Analysis, and Networking for Osteosarcoma Pathogenesis

    Get PDF
    [Abstract] Osteosarcoma is the most common subtype of primary bone cancer, affecting mostly adolescents. In recent years, several studies have focused on elucidating the molecular mechanisms of this sarcoma; however, its molecular etiology has still not been determined with precision. Therefore, we applied a consensus strategy with the use of several bioinformatics tools to prioritize genes involved in its pathogenesis. Subsequently, we assessed the physical interactions of the previously selected genes and applied a communality analysis to this protein–protein interaction network. The consensus strategy prioritized a total list of 553 genes. Our enrichment analysis validates several studies that describe the signaling pathways PI3K/AKT and MAPK/ERK as pathogenic. The gene ontology described TP53 as a principal signal transducer that chiefly mediates processes associated with cell cycle and DNA damage response It is interesting to note that the communality analysis clusters several members involved in metastasis events, such as MMP2 and MMP9, and genes associated with DNA repair complexes, like ATM, ATR, CHEK1, and RAD51. In this study, we have identified well-known pathogenic genes for osteosarcoma and prioritized genes that need to be further explored.Instituto Carlos III; PI17/01826Xunta de Galicia; ED431C 2018/49Xunta de Galicia; ED431G/0

    OncoOmics approaches to reveal essential genes in breast cancer: a panoramic view from pathogenesis to precision medicine

    Get PDF
    [Abstract] Breast cancer (BC) is the leading cause of cancer-related death among women and the most commonly diagnosed cancer worldwide. Although in recent years large-scale efforts have focused on identifying new therapeutic targets, a better understanding of BC molecular processes is required. Here we focused on elucidating the molecular hallmarks of BC heterogeneity and the oncogenic mutations involved in precision medicine that remains poorly defined. To fill this gap, we established an OncoOmics strategy that consists of analyzing genomic alterations, signaling pathways, protein-protein interactome network, protein expression, dependency maps in cell lines and patient-derived xenografts in 230 previously prioritized genes to reveal essential genes in breast cancer. As results, the OncoOmics BC essential genes were rationally filtered to 140. mRNA up-regulation was the most prevalent genomic alteration. The most altered signaling pathways were associated with basal-like and Her2-enriched molecular subtypes. RAC1, AKT1, CCND1, PIK3CA, ERBB2, CDH1, MAPK14, TP53, MAPK1, SRC, RAC3, BCL2, CTNNB1, EGFR, CDK2, GRB2, MED1 and GATA3 were essential genes in at least three OncoOmics approaches. Drugs with the highest amount of clinical trials in phases 3 and 4 were paclitaxel, docetaxel, trastuzumab, tamoxifen and doxorubicin. Lastly, we collected ~3,500 somatic and germline oncogenic variants associated with 50 essential genes, which in turn had therapeutic connectivity with 73 drugs. In conclusion, the OncoOmics strategy reveals essential genes capable of accelerating the development of targeted therapies for precision oncology.Instituto de Salud Carlos III; PI17/0182

    Prediction of Breast Cancer Proteins Involved in Immunotherapy, Metastasis, and RNA-Binding Using Molecular Descriptors and Artifcial Neural Networks

    Get PDF
    [Abstract] Breast cancer (BC) is a heterogeneous disease where genomic alterations, protein expression deregulation, signaling pathway alterations, hormone disruption, ethnicity and environmental determinants are involved. Due to the complexity of BC, the prediction of proteins involved in this disease is a trending topic in drug design. This work is proposing accurate prediction classifer for BC proteins using six sets of protein sequence descriptors and 13 machine-learning methods. After using a univariate feature selection for the mix of fve descriptor families, the best classifer was obtained using multilayer perceptron method (artifcial neural network) and 300 features. The performance of the model is demonstrated by the area under the receiver operating characteristics (AUROC) of 0.980±0.0037, and accuracy of 0.936±0.0056 (3-fold cross-validation). Regarding the prediction of 4,504 cancer-associated proteins using this model, the best ranked cancer immunotherapy proteins related to BC were RPS27, SUPT4H1, CLPSL2, POLR2K, RPL38, AKT3, CDK3, RPS20, RASL11A and UBTD1; the best ranked metastasis driver proteins related to BC were S100A9, DDA1, TXN, PRNP, RPS27, S100A14, S100A7, MAPK1, AGR3 and NDUFA13; and the best ranked RNA-binding proteins related to BC were S100A9, TXN, RPS27L, RPS27, RPS27A, RPL38, MRPL54, PPAN, RPS20 and CSRP1. This powerful model predicts several BC-related proteins that should be deeply studied to fnd new biomarkers and better therapeutic targets. Scripts can be downloaded at https://github.com/muntisa/ neural-networks-for-breast-cancer-proteins.This work was supported by a) Universidad UTE (Ecuador), b) the Collaborative Project in Genomic Data Integration (CICLOGEN) PI17/01826 funded by the Carlos III Health Institute from the Spanish National plan for Scientific and Technical Research and Innovation 2013-2016 and the European Regional Development Funds (FEDER) - “A way to build Europe”; c) the General Directorate of Culture, Education and University Management of Xunta de Galicia ED431D 2017/16 and “Drug Discovery Galician Network” Ref. ED431G/01 and the “Galician Network for Colorectal Cancer Research” (Ref. ED431D 2017/23); d) the Spanish Ministry of Economy and Competitiveness for its support through the funding of the unique installation BIOCAI (UNLC08-1E-002, UNLC13-13-3503) and the European Regional Development Funds (FEDER) by the European Union; e) the Consolidation and Structuring of Competitive Research Units - Competitive Reference Groups (ED431C 2018/49), funded by the Ministry of Education, University and Vocational Training of the Xunta de Galicia endowed with EU FEDER funds; f) research grants from Ministry of Economy and Competitiveness, MINECO, Spain (FEDER CTQ2016-74881-P), Basque government (IT1045-16), and kind support of Ikerbasque, Basque Foundation for Science; and, g) Sociedad Latinoamericana de FarmacogenĂłmica y Medicina Personalizada (SOLFAGEM)Xunta de Galicia; ED431D 2017/16Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/23Xunta de Galicia; ED431C 2018/49Gobierno Vasco; IT1045-1
    corecore