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________________________________________________________________________________________ 
Abstract Most of present mathematical models for rational design and synthesis of new drugs consider just 
the molecular structure. In the present article we pretend extending the use of Markov Chain models to define 
novel molecular descriptors, which consider in addition other parameters like target site or biological effect. 
Specifically, this model takes into consideration not only the molecular structure but the specific biological 
system the drug affects too. Herein, it is developed a general Markov model that describes 19 different drugs 
side effects grouped in 8 affected biological systems for 178 drugs, being 270 cases finally. The data was 
processed by Linear Discriminant Analysis (LDA) classifying drugs according to their specific side effects, 
forward stepwise was fixed as strategy for variables selection. The average percentage of good classification 
and number of compounds used in the training/predicting sets were 100/95.8% for endocrine manifestations 
(18 out of 18)/(13 out of 14); 90.5/92.3% for gastrointestinal manifestations (38 out of 42)/(30 out of 32); 
88.5/86.5% for systemic phenomena (23 out of 26)/(17 out of 20); 81.8/77.3% for neurological manifestations 
(27 out of 33)/(19 out of 25); 81.6/86.2% for dermal manifestations (31 out of 38)/(25 out of 29); 78.4/85.1% 
for cardiovascular manifestation (29 out of 37)/(24 out of 28); 77.1/75.7% for breathing manifestations (27 
out of 35)/(20 out of 26) and 75.6/75% for psychiatric manifestations (31 out of 41)/(23 out of 31). 
Additionally a Back-Projection Analysis (BPA) was carried out for two ulcerogenic drugs to prove in 
structural terms the physic interpretation of the models obtained. This article develops a model that 
encompasses a large number of drugs side effects grouped in specifics biological systems using stochastic 
absolute probabilities of interaction (Aπk (j)) by the first time.  
________________________________________________________________________________________ 
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1.  INTRODUCTION 
 
The spectrum of the undesirable effects of a chemical substance can be wide and not very defined. In 

therapy, a drug produces typically numerous effects, but only one of them is generally looked for as main 
objective of the treatment; almost all the other ones are considered side effects of that drug for that therapeutic 
indication. Very few doctors believe that a drug, for trivial that are their actions, it can be exempt of 
producing toxic effects.   

The use of terms like "safe" or "inoffensive" may cause unnecessary misunderstandings between the 
responsible organisms, the medical profession and the consumers of drugs, that is translated in a non justified 
trust and an expectation in the safety of the drugs by the public consumer of drugs. On the other hand, focus 
alarmists of the consequences of the side effects of the drugs affirm that thousands of patients die 
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unnecessarily due to secondary effects of the drugs. As it almost always happens, the truth is on the middle of 
the way between the two tops, but it is not known with accuracy, not even approximately, where (Goodman 
and Gilman, 2001). 

A prominent goal in pharmaceutical industry is the development of new drugs to avoid more serious side 
effects. Consequently, novel paradigms for drugs discovery  and synthesis have been introduced recently, 
based on the ability of large chemicals libraries and robotic system for bioassays. This system of high-
throughput biochemical assays allow for the synthesis and testing of hundreds of compounds each day (Lutz 
et al., 1996). 

During last year, the pharmaceutical industries have reoriented their research strategies in order to give 
more attention to those mathematical methods that permit the “rational” selection or design and synthesis of 
novel compounds whit the desired biological properties (Briggs et al., 1996; Wess, 1996). In these sense, 
Quantitative Structure-Toxicity Relationships (QSTR) are used as a predictive tools for a preliminary 
evaluation of the hazard of chemical compounds by using a computer aided mathematical models (Cronin, 
1998; Lewis, 1992; Cronin and Dearden, 1995). These mathematical models represent an alternative to the 
“real” world of assaying chemical compounds for determining their toxicological properties on live organisms 
in the laboratory avoiding the expensive, time-consuming and in many cases animal aggressive bioassays, 
which are now made only after preliminary predictions with computational models (Dearden et al., 1995; 
Roberts, 1987). 

In general, González M.P. et al., have recently discussed that QSTR mathematical models can be applied 
to congeneric and non-congeneric data sets of compounds. The first permits the understanding of specific 
biological mechanism of toxic action for molecules structurally related as well as to identify the different 
toxicological power of groups or substituents in such chemicals. On the other hand, the use of QSTR models 
for non-congeneric data sets permits the generalization of such mechanism to structurally diverse compounds 
as well as the identification of possible toxicophores of different structural nature (González et al., 2004a, b, 
c; Morales et al., 2004). 

On the other hand, Markov models are well-known mathematical tools for characterizing biomolecules 
structure. Markov models have been used for analyzing biological sequence data and they have been used to 
find new genes from the open reading frames (Vorodovsky et al., 1994, 1995). Another use of these 
mathematical models is data-based searching and multiple sequence alignment of protein families and protein 
domains. Protein turn types and sub-cellular locations have been successfully predicted (Krogh et al., 1994; 
Chou, 1997; Yuan, 1999; Hua and Sun, 2001). Hubbard and Park (Hubbard and Park, 1995) used amino acid 
sequence-based hidden Markov Models to predict secondary structures. In this sense, Krogh et al. (Krogh et 
al., 1994) have also proposed a hidden Markov Model architecture. In addition, Markov’s stochastic process 
has been used for protein folding recognition (Di Francesco et al., 1999). This approach can also be used for 
the prediction of protein signal sequences (Chou, 2001, 2002). Another seminar works can be found related to 
the application of Markov Chains (MCH) Theory to Proteomic and Bioinformatics. Chou applied Markov 
Models to predict beta turns and their types, and the prediction of protein cleavage sites by HIV protease 
(Chou, 1993). Anyhow, have not been very used Markov models to develop QSTR studies and predict drugs 
side effect. 

In this connection, our group has introduced elsewhere a physically meaningful mathematical approach 
based on Markov models (MARkovian CHemicals IN SIlico DEsign: MARCH-INSIDE) encoding molecular 
backbones information, with several applications in mathematical biology. It allowed us introducing matrix 
invariants such as stochastic entropies and spectral moments for the study of molecular properties. 
Specifically, the stochastic spectral moments introduced by our group have been largely used for small 
molecules QSAR problems including design of fluckicidal, anticancer and antihypertensive drugs. 
Applications to macromolecules have been restricted to the field of RNA without applications to proteins 
(González-Díaz et al., 2002a, b, 2003a, b, c, 2004a). In addition, the entropy like molecular descriptors has 
demonstrated flexibility in many mathematical biology problems such as: estimation of anticoccidial activity, 
modeling the interaction between drugs and HIV-packaging-region RNA, and predicting proteins and virus 



 3

activity (González-Díaz et al., 2003d, 2004b, c, d; Ramos de A., 2004a, b). In the field of QSTR our group 
has reported the first model to predict chemically-induced agranulocytocis by small-to-medium sized drug 
like molecules (González-Díaz et al., 2003e). 

However, in spite of several QSTR studies reported there have not been seriously studied almost drug side 
effects. Unfortunately, the more than 1 500 molecular descriptors reported have not only been applied to study 
drug side effects but have very disperse theoretical definition and some times not very well established 
physical definition. Consequently, becomes a forefront problem applying molecular descriptors to drugs side 
effect study but at the same time represent them in unified mathematical framework giving better 
opportunities for physicochemical interpretation (Todeschini and Consonni, 2000). In the current paper we 
attempt to develop a more serious physicochemical interpretation of the MARCH-INSIDE descriptors in 
thermodynamic terms, which allow us to contrast the relationship among these descriptors and topologic, 
flexibility, and quadratic molecular descriptors (Kubinyi et al., 1990). These new interpretation allows us built 
up a molecular thermodynamic basis in free energy terms (Villa et al., 2003) for predicting how likely a given 
drugs cause a specific side effect with respect to others side effects. This approach is able to take into 
consideration not only the molecular structure of the drug but the specific system the drug affects too. In 
particular will be possible correlate more than one property at time, in our case, drugs side effects, making it 
superior weigh against most of molecular descriptors which simply permit to correlate no more than one 
property at time, this advantage may be appropriately used in preliminary biological, pharmacological or 
toxicological studies, specially for comparative studies in early drugs develop stages. In the present work were 
modeled 19 multiple drugs side effects using a non-congeneric data set of 270 cases represented by 178 drugs 
of diverse molecular structure.  

 
2.  METHODS 

 
2.1.  Markov Thermodynamics for drug-target step-by-step interaction 
 
Let be, a hypothetical situation in which a drug molecule is free in the space at an arbitrary initial time (t0). 

It is then interesting to develop a simple stochastic model for a step-by-step interaction between the atoms of a 
drug molecule and a molecular receptor in the time on the induction of a side effect. For the sake of 
simplicity, we are going to consider from now on a general structureless receptor. Understanding as structure-
less molecular receptor a model of receptor which chemical structure it is not taken into consideration. The 
initial free energy of the drug-receptor interaction (0gj) is a state function so a reversible process of interaction 
may be separated on several elemental interactions between the j-th atom and the receptor (Villa et al., 2003). 
Afterwards, interaction continues and we have to define the free energy of interaction between the j-th atom 
and the receptor given that i-th atom has been interacted at previous time tk (kgij). In particular, immediately 
after of the first interaction (t0 = 0) takes place an interaction 1gij at time t1 = 1 and so on. So, one can suppose 
that, atoms begin its interaction whit the structureless molecular receptor binding to this receptor in discrete 
intervals of time tk. However, there are several alternative ways in which such step-by-step binding process 
may occur. Figure 1 illustrates this idea. 
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Figure1. Stochastic drug-target step-by-step interaction 
 
The free energy 0gj will be considered here as a function of the absolute temperature (T) of the system and 

the equilibrium local constant of interaction between the j-th atom and the receptor (0kj) (Villa et al., 2003). 
Additionally, the energy 1gij can be defined by analogy as 1k ij:  

( ) ( )2log1log 1100
ijijjj kTRgkTRg ⋅⋅−=⋅⋅−=  

The present approach to drug-receptor interaction has two main drawbacks. The first is the difficulty on 
the definition of the constants. In this work, we solve the first question estimating 0kj as the rate of occurrence 
(nj) of the j-th atom on molecules inducing the effect under study by molecule-receptor interaction with 
respect to the number of atoms in the molecule (n). With respect to 1k ij we must taking into consideration that 
once the j-th atom have interacted the preferred candidates for the next interaction are such i-th atoms bound 
to j by a chemical bond. Both constants can be then written down as: 
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Where, αij are the elements of the atom adjacency matrix, nj, n, 0gj, 1gij have been defined in the paragraph 
above, and R is the gases universal constant.  

The second problem relates to the description of the interaction process at higher times tk > t1. Therefore, a 
Markov chains model (MCH) (González-Díaz et al., 2002a, b, 2003a, b, c, 2004a) enables a simple 
calculation of the probabilities with which the drug-receptor interaction takes place in the time until the 
studied effect is achieved. In this work we are going to focus on drugs side effects. As depicted in Figure 1, 
this model deals with the calculation of the probabilities (kπij) with which any arbitrary molecular atom j-th 
bind to the structureless molecular receptor given that other atom i-th has been bound before; along discrete 
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time periods tk (k = 1, 2, 3, …); (k = 1 in grey), (k = 2 in blue) and (k = 3 in red) throughout the chemical 
bonding system.  

The procedure described here considers as states of the MCH the atoms of the molecule. We can built up 
the corresponding absolute initial probability vector Aπ0 and the stochastic matrix 1Π, which has the elements 
Aπ0 (j) and 1πij respectively. The elements Aπ0 (j) of the above mentioned vector Aπ0 constitutes the absolute 
probabilities with which the j-th atom interact with the receptor at the initial time with respect to any atom in 
the molecule: 
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Where, a represents all the atoms in the molecule including the j-th, na is the rate of occurrence of any 
atom a including the j-th with value nj. On the other hand, the matrix is called the 1-step drug-target 
interaction stochastic matrix 1Π is built too as a squared table of order n, where n represents the number of 
atoms in the molecule. The elements (1πij) of the 1-step drug-target interaction stochastic matrix are the 
binding probabilities with which a j-th atom bind to a structureless molecular receptor given that other i-th 
atoms have been interacted before at time t1 = 1 (considering t0 = 0): 
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Where, δ is the valence of the j-th atom. The method arranges all the Aπ0 (j) values in a vector (Aπ0) and all 
the 1πij constants as a squared table (1Π) of n x n dimension. The calculation of Aπ0 and 1Π is illustrated in 
Figure 2. By using, both Aπ0 and 1Π and Chapman-Kolgomorov equations one can describe the further 
evolution of the system, determining the average constant of interaction between the j-th atom and the 
receptor at higher times. Summing up all the constants of interaction for each atom we can derive the 
stochastic absolute probability of interaction (Aπk) between the drug and the receptor at a specific time: 

( ) ( )∑∑∑ ⋅⋅=⋅⋅=
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Where, Aπ0 is a 1 x n vector whose elements are the Aπ0 (j) probabilities for the n atoms in the molecule 
and kΠ are the kth natural powers of the 1Π matrix and u is an unitary vector. As the sum up to all atoms in 
the molecule of Aπk(j) is ever equal to 1, the atoms were groped in sets or classes (sr):  s0 = CSat = Saturated 
carbon atom;  s1 = CInst = Unsaturated carbon atom; s2 = Hal = Halogens; s3 = Het = Heteroatoms; or s4 = HX 
= Hydrogen bonded to heteroatom in order to describe local aspects of molecular structure. 

Such a model is stochastic per se (probabilistic step-by-step atom-receptor interaction in time) but also 
considers molecular connectivity (the step-by-step atom union in space throughout the chemical bonding 
system). The selection of a Markov chain process (Gnedenko, 1978; Freund and Poschel, 2000) is not 
arbitrary. Due to atoms interactions are not dependent of previous atoms interactions we can affirm that a 
MCH-based model of a stochastic drug-target step-by-step interaction obeys perfectly to the main 
characteristics of MCH (a memoryless property). This implies that the probability of the occurrence of an 
event (atom union) does not depend on the history of the process. In other words, such a model will not 
depend of atoms unions at previous times. 
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2.2. Data set methodology 
 
The data set was conformed by series of the more frequently used drugs which produce side effects in 

different human organs systems, being these ones extensively tested in clinic and the side effects reported 
obtained by pharmacovigilance studies. The use of marketed drugs in data set confers a high confidence about 
the side effect reported. The set of drugs where extracted from a report of drugs side effects listed in literature 
(Garcia and Horga de la Parte, 1994). The data set was conformed by 19 different drugs side effects grouped 
in 8 affected biological systems for 178 structurally diverse drugs (see Figure 2.), being 270 cases finally, 
taking into consideration that all side effects groups were statistically represented having each one at least 7 
drugs in order to perform a balanced training series. 
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Figure 2. Random, but not exhaustive sample of the molecular families of compounds studied 
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2.3. Statistical analysis 
 
As a continuation of the previous sections, we can attempt to develop a simple linear QSAR using the 

MARCH-INSIDE methodology, as defined previously, with the general formula: 

∑ ×+=
Sr

k
A

X SrkSrbbSE )8()(),( π  

Here, Aπk(Sr) act as the local molecular descriptors, being Sr the above mentioned atoms sets. We selected 
Linear Discriminant Analysis (LDA) (Van Waterbeemd, 1995; Kowalski and Wold, 1982) to fit the 
classification functions. The model deals with the classification of a set of compounds with diverse side 
effects. A dummy variable (SEx) codifies the side effect studied. This variable indicates either the presence 
(SEx = 1) or absence (SEx = –1) of side effect studied. In equation (8), bk represents the coefficients of the 
classification function, determined by the least square method as implemented in the LDA module of the 
STATISTICA 6.0 software package (STATISTICA, 2001). Forward stepwise was fixed as the strategy for 
variable selection (Van Waterbeemd, 1995; Kowalski and Wold, 1982). 

The quality of LDA models was determined by examining Wilk’s U statistic, Fisher ratio (F), and the p-
level (p). We also inspected the percentage of good classification and the ratios between the cases and 
variables in the equation and variables to be explored in order to avoid over-fitting or chance correlation. 
Validation of the model was corroborated by re-substitution of cases in four predicting series (González-Díaz 
et al., 2003b).  

 Clustering of compounds was carried out after previous perform of a canonical analysis using the 
algorithms implemented in the advanced options for LDA in the STATISTICA 6.0. This analysis offers as 
outputs the scores of every case for successive canonical roots which are orthogonal centred equations 
explaining decreased amounts of variance. Consequently we can plot the scores for each compound in a 
Cartesian system of coordinates and using a symbol code visually exploring the possibility of clusters 
formations (González-Díaz et al., 2003b). 

 
2.4. Back-Projection Analysis and MARCH-INSIDE 
 

In order to calculate the total atom contribution to a specific side effect in the current approach, we make 
use of the decomposition of total molecular descriptors into local descriptors. More specifically, we decompose 
the total molecular descriptors into atomic descriptors of the atom in the molecule. For example, the molecular 
descriptors of chloroform may be decomposed as follows: SRπk (HCCl3) = SRπk(H)+SRπk(C)+3SRπk(Cl). 
Afterwards, the values of the atomic descriptor for each atom are substituted in the QSTR equation, obtaining 
the contribution of the atom to the specific side effect where zones shown in gray (shown in red) are those that 
have a low (high) contribution to the specific side effect. Only the zones that contribute to the specific side 
effect were quantified. Estrada and González have explained this procedure in detail for bond spectral moments 
(Cabrera, 2002). The method, called Back-Projection Analysis (BPA), is general for any molecular descriptor, 
defined a priori as a sum of local descriptors, at least for linear QSTR/QSARs. (Stief, 2003). The main 
importance of BPA is that it offers a clear and direct interpretation of results in structural terms. Here we adapt 
a BPA approach to MARCH-INSIDE and LDA methodology. The present study is aimed on the selection of 
novel drug candidates for synthesis. Then, we select the different structural synthetic blocks of the molecules as 
molecular regions for the BPA. As LDA predicts the probability of occurrence of the side effect, we preferred to 
standardize all of the contribution in order to express them as the percentage of activity that each group 
accounts for.  
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3.  RESULTS AND DISCUSSION 
 

3.1. Mathematical model 
 

Equation (7) constitutes in mathematical terms a vector-matrix-vector form. Panoply of these transformations 
has been previously used in QSAR studies for a long time. For instance, the first molecular descriptor defined 
in a chemical context the Wiener index W (equation 9) is a quadratic form (Todeschini and Consonni, 2000). 
In addition, several other classic Zagreb indices M1 (equation 10) and M2 (equation 11), Harary number H 
(equation 12), Randic invariant χ (equation 13), valence connectivity index χv (equation 14), the Balaban index 
J (equation 15), the MTI index (equation 16), and Moreau-Boroto autocorrelation ATSd (equation 17) just to 
mention a few examples, may be expressed all of them as quadratic forms, linear or in general vector-Matrix-
vector forms (Todeschini and Consonni, 2000). Unfortunately, many of them have not a direct physical 
interpretation. The same lack in physical sense can be detected for recent quadratic qk(X) (equation 18), linear 
fk(X) (equation 19), and stochastic forms sk(X) (equation 20) introduced by Marrero-Ponce et al (2004a, b) 
and Marrero-Ponce (2004a, b): 
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Where, D, A, D-k, mB, M, and S are matrices related to distance, atom adjacency, sparse, pseudograph 
matrices and others. On the other hand, u, v, v’, v’’, and w, are vectors related to unitary, vertex degree, 
Randic atom degree, valence degree, atom weight (electronegativity). All the vectors and matrices used in 
expressions (9) to (20) have been exhaustively explained in the literature reported and references therein cited, 
see therein for details (Todeschini and Consonni, 2000; Marrero-Ponce et al., 2004a, b; Marrero-Ponce 2004a, 
b). 

 In the present work we propose to call all these molecular indices, except equation (20), the deterministic 
vector-matrix-vector forms by opposition to stochastic forms. The stochastic form, equation (20), very 
recently introduced by Marrero-Ponce (2004b) unfortunately lacks of physical sense. By the contrary, the 
main advantage of our stochastic forms is the possibility of deriving average thermodynamic parameters 
depending on the probability of the states of the MCH, which fit on more clearly physicochemical sense with 
respect to classic vector-matrix-vector forms. In specific, this work introduces by the first time a Markov form 
to calculate thermodynamic parameters of the drug-target interaction process considering in a unified scheme: 
time, chemical structure, and system including drug side effects.  

Another advantage of the present stochastic vector-matrix-vector forms with respect to Marreo-Ponce 
forms, which are derived from a multigraph, constitute the fact of it was not necessary considering different 
rates of occurrence for atoms of the same element but having different configuration e. g.: sp3, sp2, and sp 
carbons all were considered with the same atoms weights (rate of occurrence herein) for a specific side effect, 
the rate of carbon atoms (Marrero-Ponce et al., 2004a, b; Marrero-Ponce 2004a, b). It was possible due to the 
pij values clearly distinguished among these atoms because of the different connectivity (see Figure 3). It is 
clear from Figure 2 that atoms with different connectivity or configuration will have a different probability of 
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union to the structure-less molecular receptor in spite of having the same rate of occurrence. All these are the 
reasons for the selection in this work of our stochastic forms instead of others. 
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Figure 3. Definition and calculation of Π1 matrix for a specific compound in three particular cases of side 
effects. The element symbol is used to denote the value of the rate of recurrence [i.e., Cl represents the rate of 
recurrence (nCl) of chlorine atom for the specific side effect]. Thr: Thromboembolism, Pat: Pancreatitis, PhD: 
Photodermatitis. 
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Once we perform a representative and balanced training series selection it could be used to fit the 
classification functions. The models where subjected to the principle of parsimony. Then, we chose a function 
with high statistical significance but having few terms bSr,k x Aπk (Sr) as possible to each of 19 studied side 
effects. In order to derive a classification function that permits the classification of drugs as positive (presence 
of side effect) or negative (absence of side effect) we use the LDA in which stochastic absolute probabilities 
of interactions Aπk(Sr) are used as independent variables. The classification models obtained to each studied 
side effect are given below in table 1 together whit the statistical parameters of the LDA, validations of the 
current model by re-substitution of cases in four predicting series results and percents of good classification to 
each model. 

 
Table1. Overall train accuracy, cross-validation (CV) predictability, and models for different drugs side effects. 

 

 
 
 

Side Effects Train CV Model 
Gastrointestinal Manifestations 

Constipation or ileo (CoI) 90.9 97.7 CoI = -4.78 + 19.91Aπ2(CInst) + 8.86Aπ1(Het) 
- 9.49Aπ5(HX) 

Pancreatitis (Pat) 93.3 93.3 Pat = -6.68 + 8.99 Aπ2(CInst) + 32.13 Aπ1(Het) 
+ 24.31 Aπ5(HX) 

Peptic or hemorrhagic 
Ulceration (PoHU) 87.5 87.5 PoHU = -10.96 + 27.29 Aπ2(CInst) + 29.54 Aπ1(Het) 

- 5.35 Aπ5(HX) 
Total 90.5 92.3 N = 42     U = 0.259     F = 11.88      p = 0.0000 

Cardiovascular Manifestations 
Exacerbations of angina 
pectoris (EAP) 80.0 77.5 EAP = -7.88 + 21.91Aπ4(CInst) + 21.39Aπ5(Het) 

+ 17.52Aπ3(HX) - 31.82Aπ5(Hal) 

Hipertensión (HyperT) 76.9 76.9 HyperT = -6.57 + 24.57 Aπ4(CInst) + 3.46 Aπ5(Het) 
+ 20.33 Aπ3(HX) + 4.33 Aπ5(Hal) 

Thromboembolism (Thr) 78.6 98.2 Thr = -4.73 + 7.34 Aπ4(CInst) + 31.02 Aπ5(Het) 
- 1.79 Aπ3(HX) - 13.36 Aπ5(Hal) 

Total 78.4 85.1 N = 37     U = 0.407     F = 4.39     p = 0.0003 
Systemic phenomena 

Anaphylaxis (Anph) 85.7 82.1 Anph = -16.08 + 97.23Aπ0(Het)  - 14.83Aπ5(HX) 
+ 217.40Aπ0(CSat) - 100.21Aπ5(CSat) 

Lupus Erythematosus (LE) 91.7 91.7 LE = -7.67 + 57.99 Aπ0(Het)  + 3.69 Aπ5(HX) 
+ 111.03 Aπ0(CSat) - 44.93 Aπ5(CSat) 

Total 88.5 86.5 N = 26      U = 0.404    F = 7.76     p = 0.0005 
Breathing Manifestations 

Infiltrated lung (IL) 84.6 72.7 IL = -41.28 + 44.95Aπ1(CInst) + 316.99Aπ0(CSat) 
+ 85.53Aπ5(CInst) + 32.62Aπ1(Hal) 

Bronchospasm (Brch) 72.7 78.4 Brch = -48.18 + 102.39 Aπ1(CInst) + 341.35 Aπ0(CSat) 
+ 41.86 Aπ5(CInst) + 16.99 Aπ1(Hal) 

Total 77.1 75.7 N = 35     U = 0.705     F = 3.13     p = 0.0289 
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Endocrine Manifestations 

Galactorrhea 
(amenorrhea) (Gal) 100.0 94.4 Gal =  -8.60 + 4767.30Aπ5(CSat)  - 11109.50Aπ4(CSat) 

+ 7361.80Aπ3(CSat) - 966.90Aπ1(CSat) 
Thyroid function 
test disorders (TFTD) 100.0 97.2 TFTD = -2.71 + 745.71Aπ5(CSat)  - 2972.21Aπ4(CSat) 

+ 2630.04Aπ3(CSat) - 384.09Aπ1(CSat) 
Total 100.0 95.8 N = 18     U = 0.309    F = 7.28     p = 0.0026 

Neurological Manifestations 

Convulsions (Cvs) 90.0 87.5 Cvs = -3.62 + 735.92Aπ5(Hal)  + 598.03Aπ0(Hal) 
- 1163.01Aπ2(Hal) - 51.39Aπ5(CInst) + 69.96Aπ2(CInst) 

Extrapyramidals effects (EE) 70.0 61.5 EE = -5.38 - 138.26 Aπ5(Hal)  - 4193.30 Aπ0(Hal) 
+ 3322.32 Aπ2(Hal) + 18.90 Aπ5(CInst) + 3.88 Aπ2(CInst) 

Total 81.8 77.3 N = 33     U = 0.632    F = 3.14     p = 0.0231 
Dermal Manifestations 

Acne (Ac) 80.0 82.5 Ac =  -5.24 + 27.41Aπ2(CInst)  - 46.53Aπ5(Hal) 
+ 0.15Aπ1(Het) + 7.83Aπ2(HX) + 178.39Aπ0(Hal) 

Alopecia (Alp) 75.0 89.1 Alp =  -6.81 + 16.59 Aπ2(CInst)  - 291.85 Aπ5(Hal) 
+ 43.82 Aπ1(Het) - 22.73 Aπ2(HX) + 361.79 Aπ0(Hal) 

Photodermatitis (PhD) 91.7 85.4 PhD =  -11.48 + 37.57 Aπ2(CInst)  - 233.34 Aπ5(Hal) 
+ 25.66 Aπ1(Het) - 7.21 Aπ2(HX) + 399.68 Aπ0(Hal) 

Total 81.6 86.2 N = 38     U = 0.347    F = 4.32     p = 0.0001 
Psychiatric Manifestations 

Deliriums or 
confusional states (DoCS) 73.7 69.7 DoCS = -21.07 + 76.99Aπ2(CInst)  + 75.11Aπ5(CSat) 

Somnolence (Snl) 77.3 77.0 Snl = -28.82 + 92.94Aπ2(CInst)  + 83.05Aπ5(CSat) 
Total 75.6 75.0 N = 41     U = 0.660     F = 9.79     p = 0.0004 

 
 
In the models the coefficient U is the Wilk’s statistics and F is the Fisher ratio. The Wilk’s U-statistic is 

the standard statistic that is used to denote the statistical significance of the discriminatory power of the 
current model (González-Díaz et al., 2002a; Franke, 1984). Results displayed in table 2 prove the robustness 
and predictability of the mathematical models obtained. 

 
Table 2.  Cross-validation (CV) predictability and robustness for different drugs side effects. 
 
 

 
1* 2* 3* 4* Mean* 1* 2* 3* 4* Mean*Side Effects / CV 

Gastrointestinal Manifestations 
 Predictability Robustness 

Constipation or ileo 100.0 100.0 90.9 100.0 97.7 88.9 87.5 75.0 87.5 84.7 
Pancreatitis 93.3 93.3 93.3 93.3 93.3 91.7 90.9 100.0 81.8 91.1 
Peptic or hemorrhagic ulceration 87.5 87.5 87.5 87.5 87.5 66.7 83.3 83.3 91.7 81.3 
Total 92.9 92.9 90.47 92.9 92.3 81.8 87.1 87.1 87.1 85.8 
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 Cardiovascular Manifestations 
 Predictability Robustness 

Exacerbations of angina pectoris 80.0 70.0 90.0 70.0 77.5 87.5 75.0 85.7 100.0 87.1 
Hipertension 76.9 69.2 76.9 84.6 76.9 70.0 80.0 60.0 77.8 71.9 
Thromboembolism 100.0 100.0 100.0 92.9 98.2 72.7 90.9 90.0 50.0 75.9 
Total 86.5 81.1 89.2 83.8 85.1 75.9 82.8 77.8 73.1 77.4 

 Systemic phenomena 
 Predictability Robustness 

Anaphylaxis 78.6 85.7 85.7 78.6 82.1 90.9 81.8 80.0 90.0 85.7 
Lupus erythematosus 83.3 91.7 91.7 100.0 91.7 100.0 88.9 88.9 100.0 94.4 
Total 80.8 88.5 88.5 88.5 86.5 95.0 85.0 84.2 94.7 89.7 
 Breathing Manifestations 
 Predictability Robustness 
Infiltrated lung 84.6 46.2 79.9 79.9 72.7 70.0 60.0 80.0 88.9 74.7 
Bronchospasm 86.4 81.8 68.2 77.3 78.4 82.4 76.5 75.0 81.3 78.8 
Total 85.7 68.6 71.4 77.1 75.7 77.8 70.4 76.9 84.0 77.3 

1* 2* 3* 4* Mean* 1* 2* 3* 4* Mean*Side Effects / CV 
Endocrine Manifestations 

 Predictability Robustness 
Galactorrhea (amenorrhea) 88.9 100.0 100.0 88.9 94.4 100.0 100.0 100.0 100.0 100.0 
Thyroid function test disorders 100.0 100.0 88.9 100.0 97.2 100.0 100.0 100.0 100.0 100.0 
Total 94.4 100.0 94.4 94.4 95.8 100.0 100.0 100.0 100.0 100.0 

 Neurological Manifestations 
 Predictability Robustness 

Convulsions 90.0 90.0 95.0 75.0 87.5 93.3 86.7 93.3 80.0 88.3 
Extrapyramidals effects 69.2 53.8 53.8 69.2 61.5 70.0 50.0 60.0 77.8 64.4 
Total 81.8 75.8 78.8 72.7 77.3 84.0 72.0 80.0 79.2 78.8 
 Dermal Manifestations 
 Predictability Robustness 
Acne 80.0 80.0 80.0 90.0 82.5 62.5 62.5 71.4 85.7 70.5 
Alopecia 87.5 93.8 87.5 87.5 89.1 91.7 83.3 83.3 66.7 81.3 
Photodermatitis 66.7 100.0 91.7 83.3 85.4 77.8 77.8 88.9 77.8 80.6 
Total 78.9 92.1 86.8 86.8 86.2 79.3 75.9 82.1 75.0 78.1 
 Psychiatric Manifestations 
 Predictability Robustness 
Deliriums or confusional states 73.7 73.7 68.4 63.2 69.7 73.3 64.3 78.6 64.3 70.1 
Somnolence 72.3 72.3 81.8 81.8 77.0 88.2 76.5 75.0 75.0 78.7 
Total 75.6 75.6 75.6 73.2 75.0 81.3 71.0 76.7 70.0 74.7 

* % of good classification based on posterior probabilities for four different training and predicting sets; 
predictability refers to compounds within predicting sets and robustness to compounds within training ones. 
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In order to simplify the equations for the purposes of interpretation and the possibility of graphical 
representation, we performed a canonical analysis (Van Waterbeemd, 1995) for gastrointestinal manifestations 
side effects group with the only purpose of illustrate the capability of the equations obtained to condense more 
than two side effects groups in only one simple equation (Root function) and its ability to discriminate 
between several side effects groups. The main root obtained (Root 1) proved to be a simple equation centered 
to 0: 

)21((HX)π0.1336(Het)π0.7553(CInst)π0.4499Root2

(HX)π0.6783(Het)π0.3247(CInst)π0.8835Root1
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This canonical root presented an eigen-value of 1.32 and an acceptable regression coefficient of 0.75, 
which it is statistically significant (p-level<0.05), together whit a Chi-squared statistic of 51.28.  

Aimed on finding some similarity whit others descriptors we could contrast our stochastic vector-matrix-
vector forms Aπk(Sr) whit Toporov optimization of correlation weights of local graph invariants (OCWLI) 
named flexible descriptors (Toropov and  Toropova, 2001, 2002, 2003; Toropov and Benfenati, 2004) (do not 
confound with flexibility descriptors). In this sense, both descriptors take into consideration more than one 
parameter. In flexible descriptors case, it is taken into consideration the abstract parameters (weights) which 
can be optimized in function of the pursued objectives. On the other hand, the parameters ours molecular 
descriptors take into consideration cannot be optimized, but have a direct physicochemical interpretation, such 
aspect has been analyzed in previous paragraphs of methods section. 

 
3.2 Back-projection analysis 
 

Finally, we applied a BPA in order to carry out a physical interpretation in structural terms of the models 
obtained. BPA graphics for two ulcerogenic drugs (Piroxicam and Droxicam) where developed. As was 
explained in the Methodology section, zones shown in gray (shown in red) are those that have a low (high) 
contribution to the specific side effect. 

The ulcerogenic ability of the non steroid anti-inflammatory drugs (NSAID)  generally is due to the 
inhibition of the synthesis of the prostaglandins E1 and E2, both depressors of the gastric secretion and 
intestinal mucosa vasodilator, this could promote the gastric secretion and to cause gastric vasoconstriction. 
This effect could derive in an ischemic necrosis that would originate a loss of gastric mucosa able to 
degenerate in a chronic gastric ulceration.   

A hypothesis based on the structure-activity relationships for indomethacine and several NSAID; propose 
a receptor for these drugs, consistent in two non coplanares hydrophobic regions and a cationic core. Figure 4 
shows the proposed receptor. This receptor consists essentially on an extensive flat surface, a hole to 
accommodate a group outside of the plane (for example an aromatic ring), and a cationic core in charge of 
associating to the acid anion (or a protonated amine) (Gund and Shen, 1977).  
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Figure 4. Model for the prostaglandin synthetase cyclooxygenation site proposed by Gund and Shen (Gund 
and Shen, 1977). 

 
In both cases (piroxicam and droxicam) the back-projection analysis shows concordant results with this 

receptor model, droxicam three fusionated rings and piroxicam's benzothiazine core have a significant 
contribution to the ulcerogenic ability (66.68% and 55.2% respectively). In both cases the pyridine ring show 
a contribution higher than 23%, coinciding with the receptor model too. In general the molecular regions 
implicated in the interaction with the receptor present a high contribution to the toxicity of droxicam and 
piroxicam (92.5% and 78.5% respectively).  
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Figure 5. Back-projection graphic for two drugs classified as able to induce peptic or hemorrhagic ulceration 
(Piroxicam and Droxicam). P = posterior probability of produce Hemorrhagic or peptic ulceration. 
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The same receptor model corresponds to the active center of the prostaglandin cyclooxygenase (COX), 
required enzyme for the biotransformation of the araquidonic acid to prostaglandins, causing the ulcerogenic 
effects above mentioned as a consequence of the inhibition of the synthesis of the prostaglandins E1 and E2 
(Gund and Shen, 1977). 
 

Additionally, the conformational geometry of both molecules was optimized using a PM3 semi-empirical 
method implemented in the software HyperChem Release® 7.03 for Windows® (HyperChem, 2002) proving 
the conformational affinity of these drugs for the COX receptor. This point may be confirmed in Figure 6. 

 
 

 
Piroxicam. E = -3945.6167, Grad = 0.078, 
Conv = YES (91cycles 199 points), 
[Iter = 1 Diff = 0.00000] 
 
 

Droxicam. E = -4098.6198, Grad = 0.087, 
Conv = YES (110 cycles 242 points), 
[Iter = 1 Diff = 0.00000] 
 
Figure 6.  Conformational geometry optimization of Droxicam and Piroxicam using a PM3 semi-empirical 
calculation method. 

 
Equation obtained for this drug side effect (PoHU = -10.96 + 27.29 Aπ2(CInst) + 29.54 Aπ1(Het) - 5.35 

Aπ5(HX)) show a positive contribution of unsaturated carbons and heteroatoms and a negative contribution of 
the hydrogen bonden to a heteroatom, this probably due to the formation of intramolecular hydrogen bonds 
which could decrease the probability of union of the molecule to the molecular receptor. This tentative 
interpretation is supported by the results obtained in the BPA, proved in structural terms. 
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4. CONCLUDING REMARKS 
 
The fusion of high throughput screening and QSAR/QSTR (González-Díaz et al., 2002a, b, 2003a, b, c,  d, 

e, 2004a, b, c, d; Ramos de A., 2004a, b) techniques in attempt to develop new drugs avoiding more serious 
side effects and minimize the costs in terms of time, financial, human and animal resources is becoming a 
viable alternative to rational design, massive screening and synthesis of novel compounds. The results 
described here have demonstrated that MARCH-INSIDE methodology encode molecular backbones 
information, with several applications in mathematical biology. Specifically, stochastic absolute probabilities 
of interaction Aπk(Sr) is able to provide a physicochemical direct interpretation for drug-target step-by-step 
interaction taking into consideration not only the molecular structure of the drug but the specific system the 
drug affects too. In particular, thru this molecular descriptor will be possible correlate more than one property 
at time (in our case, drugs side effects) having a more serious physicochemical interpretation in 
thermodynamic terms. This fact make the present descriptors superior weigh against most of molecular 
descriptors, which correlate no more than one property at time (Cabrera and Bermejo, 2004). This advantage 
may be appropriately used in preliminary biological, pharmacological or toxicological studies and synthesis of 
new drugs, especially for comparative studies in drug development early stages. 

 
5. LIST OF ACRONYMS 

 
QSTR: Quantitative structure-toxicity relationships 
MCH: Markov chains 
HIV: Human immunodeficiency virus 
MARCH-INSIDE: Markovian chemicals in sílico design 
QSAR: Quantitative structure-activity relationships 
RNA: Ribonucleic acid 
LDA: Linear discriminant analysis 
BPA: Back-Projection Analysis 
OCWLI: Optimization of correlation weights of local graph invariants 
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