56 research outputs found

    Modeling and Optimization of Care Transitions

    Get PDF
    More than 145 million people live with at least one chronic condition, and almost half of them have multiple conditions. As a result, many managed care and integrated delivery systems have taken a great interest in alleviating the many deficiencies in managing the current care system that spans across various care delivery settings. In addition, many Americans have to rely on some social health insurance plan to cover her care expenses. As a result, these patients often may not been sufficiently cured but have to be transitioned to less expensive but less medically intensive facilities, due to the increasing pressure on the social health insurance programs to save their total spending. This in turns increases the risk of being readmitted to more expensive facilities sooner. In this thesis, we systematically study stochastic transitions within a system of care delivery. We investigate how to modify insurable length of stay to reduce the total care spending and improve the quality of care to individual patients. We first develop a chronic care cycle model to optimize the transitions between two types of settings: the inpatient care setting and the home- and community-based care setting. By optimizing the number of covered episodes, and the coverage LOS for each episode, this model is intended to balance the tradeoff between the cost of staying and the cost of (forced) transition, as well as the tradeoff between current cost and future (opportunity) cost. The results indicate that as a public insurer, the best strategy will be only focusing on the early episodes and covering them unlimitedly. We also develop a three-layer rehabilitation service process model and use discrete event simulation to study the transitions among three levels of rehabilitations: primary rehab, secondary rehab, and tertiary rehab. We test different values for on the coverage LOS for primary rehab and secondary rehab to balance the tradeoff between the current cost and future cost. We assume some relationship between the quantity of care and care transition probability, and observe their joint effect on cost and rehospitalization incidences in the given length of period. The results indicate that as a public insurer, the best strategy will be remaining current coverage on primary rehab but limiting coverage on secondary rehab

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    ND.ics

    No full text
    Seawater intrusion</p

    Order Allocation Research of Logistics Service Supply Chain with Mass Customization Logistics Service

    No full text
    This paper studies the order allocation between a logistics service integrator (LSI) and multiple functional logistics service providers (FLSPs) with MCLS. To maximize the satisfaction of FLSPs, minimize the total cost of LSI, and maximize the customized degree, this paper establishes a multiobjective order allocation model of LSSC that is constrained by meeting customer demand, customer order decoupling point, and order difference tolerance coefficient. Numerical analysis is performed with Lingo 12 software. This paper also discusses the influences of scale effect coefficient, order difference tolerance coefficient, and relationship cost coefficient on the comprehensive order allocation performance of the LSSC. Results show that LSI prefers FLSPs with better scale effect coefficients and does not need to set an extremely high order difference tolerance coefficient. Similarly, setting a high relationship cost coefficient does not necessarily correspond to better results. For FLSPs, the continuous improvement of large-scale operational capacity is required. When the comprehensive order allocation performance of the LSSC is high, the LSI should offer cost compensation to improve the satisfaction of the LSSC

    Assessing Anthropogenic Impacts on Chemical and Biochemical Oxygen Demand in Different Spatial Scales with Bayesian Networks

    No full text
    In order to protect the water environment in seriously polluted basins, the impacts of anthropogenic activities (sewage outfalls and land use) on water quality should be assessed. The Bayesian network (BN) provides a convenient way to model these complex processes. In this study, anthropogenic impacts on chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were evaluated in the Huaihe River basin (HRB) considering dry and wet seasons and different spatial scales. The results showed that anthropogenic activities had the most significant impacts on COD and BOD at the catchment scale. In dry seasons, sewage outfalls played an important role in organic pollution. Farmland became the most important source in wet seasons although it had a &ldquo;sink&rdquo; process in dry seasons. Intensive human activities in urban made significant contributions to increased COD levels. Grassland had a negative relationship with organic pollution, especially in dry seasons. Therefore, governments should implement strategies to control organic matters transported from urban and farmland regions. Increasing the efficiency of wastewater treatments and the percentage of grassland in the riparian zone could improve water quality. These results can enhance understanding of anthropogenic impacts on water quality and contribute to efficient management for river basins

    Response of water quality to land use and sewage outfalls in different seasons

    Get PDF
    To better manage water environment in highly polluted rivers, the influence factors on water quality need to be investigated. With the effects of oxygen-demanding contaminants, it is difficult to resolve the complex interdependencies of the various factors using conventional methods. The Bayesian Networks (BNs), in which each variable only depends on its immediate parent variables, can solve this problem. In this study, the BNs were developed to assess the impacts of land use and sewage outfalls on Ammonia Nitrogen (AN) and Dissolved Oxygen (DO) concentrations in the Huaihe River Basin (HRB) for different seasons and spatial scales, where AN was a typical oxygen-demanding contaminant and the most serious contaminant in the area. The BNs gave the best explanations for variations in AN (NSE = 0.80) and DO (NSE = 0.72) concentrations by using land use and sewage outfalls data at the local scale (less than 20 km radii around monitor stations), suggesting that controlling water contaminant sources at local scales can improve water quality efficiently. AN negatively affected DO concentration, which was more significant in dry seasons. Wastewater from sewage outfalls was the largest contributor (26.2%) to AN pollution in dry seasons, which was weakened in wet seasons by an intensive dilution process. Farmland acted as a “sink” in dry seasons and as a “source” in wet seasons. The transition between two states was caused by large variations in surface runoff between dry and wet seasons. Urban land made a disproportionately large contribution to water pollution compared to other kinds of land use. These findings improve our understanding of influence factors on water quality and will contribute to effective river management

    Effects of deep pools on salinization in coastal reservoirs

    No full text
    Coastal reservoir contributes to alleviating the freshwater shortage in stressed areas, and the salinization of reservoir water is one of the most important challenges that coastal reservoir faced. Field-investigation indicates that there are many deep pools located at reservoir bed, and a large amount of high-salinity water was found within a deep pool which was hardly be desalted. Laboratory experiments and numerical simulations with different depth and locations of deep pools were conducted to further discuss the influence of deep pool on the salinization of reservoir and adjacent aquifer. Results showed that deep pool has greatly increased the salinity of reservoir water due to high-salinity water stored in the deep pool, which may act as an extra source of saltwater to the coastal reservoir during the dry season. The increasing depth of the deep pool was found to have negative impacts on the salinity of reservoir water, and as the distance from the deep pools to dam increased, the salinization extent in coastal reservoir decreased. Salinity data from the numerical simulations in coastal reservoirs and adjacent aquifer were matched the experimental data well. Flow field indicates that there is a high exchange capacity zone occurred from the deep pool to the seaward boundary, which gave the reasonable reasons for the existence of high-salinity water within deep pools. Those findings highlight the significant influence of deep pool on the salinization of the coastal reservoir, and explain the increased salinization by the deep pool
    corecore