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ABSTRACT 

Mo, Yuming. M.S.I.E., Purdue University, May 2014. Modeling and Optimization of 

Care Transitions. Major Professor: Nan Kong. 

 

 

More than 145 million people live with at least one chronic condition, and almost half of 

them have multiple conditions. As a result, many managed care and integrated delivery 

systems have taken a great interest in alleviating the many deficiencies in managing the 

current care system that spans across various care delivery settings. In addition, many 

Americans have to rely on some social health insurance plan to cover her care expenses. 

As a result, these patients often may not been sufficiently cured but have to be 

transitioned  to less expensive but less medically intensive facilities, due to the increasing 

pressure on the social health insurance programs to save their total spending. This in 

turns increases the risk of being readmitted to more expensive facilities sooner. 

In this thesis, we systematically study stochastic transitions within a system of care 

delivery. We investigate how to modify insurable length of stay to reduce the total care 

spending and improve the quality of care to individual patients. 

We first develop a chronic care cycle model to optimize the transitions between two types 

of settings: the inpatient care setting and the home- and community-based care setting. 

By optimizing the number of covered episodes, and the coverage LOS for each episode, 

this model is intended to balance the tradeoff between the cost of staying and the cost of 
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(forced) transition, as well as the tradeoff between current cost and future (opportunity) 

cost. The results indicate that as a public insurer, the best strategy will be only focusing 

on the early episodes and covering them unlimitedly. 

We also develop a three-layer rehabilitation service process model and use discrete event 

simulation to study the transitions among three levels of rehabilitations: primary rehab, 

secondary rehab, and tertiary rehab. We test different values for on the coverage LOS for 

primary rehab and secondary rehab to balance the tradeoff between the current cost and 

future cost. We assume some relationship between the quantity of care and care transition 

probability, and observe their joint effect on cost and rehospitalization incidences in the 

given length of period. The results indicate that as a public insurer, the best strategy will 

be remaining current coverage on primary rehab but limiting coverage on secondary 

rehab. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and Motivation 

More than 145 million people, or almost half of all Americans, live with at least one 

chronic condition. That number is projected to increase by more than one percent per 

year by 2030, resulting in an estimated chronically ill population of 171 million (Wu & 

Green, 2000). Almost half of all people with chronic illness have multiple conditions 

(Anderson, 2004). As a result, many managed and integrated care delivery systems have 

taken a great interest in alleviating  the many deficiencies in current management of 

diseases such as diabetes (Kimura, DaSilva, & Marshall, 2008), heart disease, depression, 

asthma and others. As a result, cyclic chronic care management models (Carson, Cramp, 

Morgan, & Roudsari, 1998) and coordinated care system (Battersby, 2005) have been 

proposed to improve the operations in care coordination and transition. In a coordinated 

care delivery system, patient will receive care services in different levels of settings. 

Based on the quantity of service provided, the settings can be described as upstream 

settings and downstream settings. Upstream settings are expensive but provide higher 

quantity of care, while downstream settings are more affordable but the quantity of care 

is lower. For the upstream settings, the process of admission, staying and receiving care, 

and leaving for downstream settings is referred as one episode. However, it remains 

unclear how the practice guideline should be developed at the individual level for either 
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proposed integrated care delivery system, especially when it is under pressure of reducing 

readmissions while cutting down inpatient spending.  

Many Americans have to rely on some social health insurance plan to cover her care 

expenses, which typically specifies the number of episodes to cover, and the number of 

days (referred as LOS) to cover for each episode. For these people, after staying in the 

inpatient care setting for a certain number of days, they may have not been sufficiently 

cured but have to leave for the home- and community-based care setting, then they will 

be forced to transition out of the inpatient care setting if without the continued coverage 

of the insurance plan. As a result, the patients may be more likely to be readmitted back 

to the inpatient care setting sooner.  

It is common for patients in the United States to be readmitted to inpatient care hospitals 

after a short period of time post hospital discharge. Hospitals readmissions incur 

unnecessary cost. It is estimated that preventable readmissions for Medicare patients 

alone cost $17 billion annually (Jencks, Williams, & Coleman, 2009) which is equivalent 

to more than 10% of Medicare benefit payment for hospital inpatient services (Centers 

for Medicare & Medicaid Services, 2013). Hence, readmission reduction is critical to the 

U.S. public funding agencies, such as Medicare and Medicaid, whose spending increases 

rapidly in recent years with the population aging and increased prevalence of chronic 

conditions. 

1.2 Problem Description 

In this thesis, we develop two models for optimizing a coordinated care delivery system. 

In Chapter 3, we develop a stochastic process model to optimize the cyclic care delivery 

process between the inpatient care setting and the home- and community-based care 
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setting. In Chapter 4, we developed a discrete event simulation model to study transitions 

among three levels of rehabilitations services: primary rehab, secondary rehab and 

tertiary rehab. 

 Chronic Care Cycle 

In a chronic care cycle model, we consider a cyclic care delivery process optimization 

problem involving care transitions between two distinct care delivery settings: the 

inpatient care setting and the home- and community-based care setting (referred as 

HCBC). We take the viewpoint of minimizing care spending for a pubic insurer. We 

consider two types of costs: the cost of staying in health care settings and the cost of 

transition between settings. One important part of transition cost is the forced transition 

cost, which occurs when the inpatient care setting fails to sufficiently cure the patient 

within the insurable LOS in a specific episode. Sometimes other forms of cost can also be 

counted as forced transition cost. For instance, in order to ensure that patients will receive 

adequate support from the insurance plans, when the insurer fails to cover a patient for a 

specific episode, a forced transition cost will be incurred, which can be regarded as a 

penalty to the insurer.  

With a longer coverage LOS, the patient will spend more time in the inpatient care 

setting, incurring higher current cost of staying, however also increasing her chance of 

being cured and leaving the system for good. While the cost of staying will decrease with 

a shorter coverage LOS, and the insurance company will be more likely to be charged for 

forced transition cost.  On the other hand, with shortened coverage LOS, the patient will 

be less likely to be cured, which incurs more transitions and higher opportunity cost. 

Hence an optimal insured LOS will need to balance between the cost of staying and the 
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cost of (forced) transition, as well as the tradeoff between current cost and future 

(opportunity) cost. 

To make this tradeoff optimally, we propose a stochastic process model for the insurance 

duration decision. Given a maximum number of covered episodes, the probabilities of 

being cured and transitioned between settings, as well as the unit cost of staying and 

transition, this model minimizes the expected total cost of staying and transition over the 

whole inpatient process, by deciding the optimal number of covered episodes, and the 

coverage LOS for each episode. 

 Three-Layer Rehabilitation Service Process 

In the three-layer rehabilitation service process model, we consider three layers along the 

rehabilitation service process. The three layers are primary rehab, secondary rehab and 

tertiary rehab. The first two types are provided in an inpatient setting whereas the last one 

is given in a home- and community-based setting. Usually a patient will receive initial 

care in the primary rehab, while she will be serviced in the secondary rehab when 

rehospitalization occurs. We use discrete-event simulation to describe the transition 

process among them. We consider two measures: total care spending and 

rehospitalization incidences. We test different coverage LOS for primary rehab and 

secondary rehab, to observe their effect on care spending and rehospitalization 

frequencies.  

With a longer coverage LOS, the patient will spend more time in primary and secondary 

rehab, incurring higher current cost, however the patient will have a lower risk of 

rehospitalization with higher future cost. While with a shorter coverage LOS, though the 

current cost can be reduced, the patient will be more likely to incur rehospitalization 
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because of the reduced quantity of care, and the insurer will have to pay for higher cost in 

the future. Hence an optimal insured LOS will need to balance between the current cost 

and future cost. 

We assume some relationship between the quantity of care and rehospitalization 

probability, and observe their joint effect on cost and rehospitalization incidences for the 

given length of period. With these observations, we can obtain a more systematic view of 

the system and offer insights into policy making. 

1.3 Contribution 

In the chronic care cycle model, we propose an innovative way of defining states in 

stochastic process. Instead of only using states to present the health conditions of the 

patient, this model also incorporates the inpatient LOS into the states, which enables us to 

incorporate the effect of forced transition. We also use the idea of control limit to develop 

algorithms to solve the optimization problem. 

In the three-layer rehabilitation service process model, we introduce discrete event 

simulation method to study the transition system. It provides a flexible and intuitive way 

to test the effect of different policies on the coordinated rehab system. 

1.4 Outline of Thesis 

The remainder the thesis is organized as follows. In chapter 2, literatures on modeling 

health care transitions are presented. In chapter 3, the chronic care cycle model is 

developed and the optimization problem is analyzed with a case study. In chapter 4, the 

three-layer rehabilitation service process is simulated and the effect of shortened LOS on 

total cost and rehospitalization incidence is presented. Finally, in chapter 5, main 

conclusions are summarized, and future research is discussed.  
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CHAPTER 2. LITERATURE REVIEW 

Several articles that propose the problem and optimization method of health care 

transition problem have be have been cited in this chapter. These papers motivate the 

problem, analyze it on multiple aspects such as rehabilitation length of stay, pattern 

recognition and care setting, and optimize the system by various method such as discrete 

event simulation, system dynamics and decision analysis.   

In Thomas, Guire, & Horvat (1997), the relationship between hospital length-of-stay 

(LOS) and quality of care was investigated. It indicated that LOS was widely used as an 

indicator of hospital performance and sometimes was also assumed to be related to 

quality. Under some assumption, longer than expected LOSs was viewed as indicative of 

poor quality care. It also showed that in 1/13 of the clinical conditions examined, cases 

that received poor quality care had significantly longer risk-adjusted LOSs than cases 

with acceptable quality. 

In Brailsford & Hilton (2001), two different simulation approaches, which were widely 

used in health care domain, were discussed: discrete event simulation and system 

dynamics. The aim of this paper is to discuss the root cause of the choice of 

methodology, and whether one approach is superior to the other. Also, it provided 

guidelines for modelers to choose from these approaches.
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In M. Murtaugh & Litke (2002), a 2-year longitudinal record was conducted on the use of 

short-stay hospitals and post-acute and long-term care settings. This analysis provided 

new information on post-acute and long-term care use patterns and showed which types 

of transitions were most likely to be followed by potential problems. It also proposed 

three broad strategies which can improve the outcome of transitions through post-acute 

and long-term care settings. 

In Coleman, Min, Chomiak, & Kramer (2004), The Medicare Current Beneficiary Survey 

was used to identify and describe patterns of post-hospital care transitions, which was 

characterized as uncomplicated (a sequence of transfers from higher-to lower-intensity 

care environments without recidivism) or complicated (the opposite sequence of events). 

Also, this paper developed indices to identify patients at risk for complicated transitions. 

It concluded that post-hospital care transitions were common among Medicare 

beneficiaries and patterns of care varied greatly. 

In Naylor, Kurtzman, & Pauly (2009), a case was made which enhanced health care 

quality and outcomes among these elders by reducing preventable hospitalizations and 

improving transitions to and from hospitals. It recommended immediate actions targeting 

diffusion of evidence-based care to decrease avoidable re-hospitalizations and save cost. 

It was also suggested that policy changes were needed to address barriers to high-quality 

transitional care, including deficits in health professionals’ and caregivers’ knowledge 

and resources, regulatory obstacles, and inadequate financial incentives and clinical 

information systems. 

In Arango-Lasprilla et al.(2010), a prediction rule was developed to acutely identify 

patients at risk for extended rehabilitation length of stay (LOS) after traumatic brain 
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injury (TBI) by using demographic and injury characteristics. This prediction rule 

considered a series of predictors such as FIM motor and cognitive scores at admission, 

pre-injury level of education, cause of injury, punctate/petechial hemorrhage, acute-care 

LOS, and primary payer source.  It was concluded that this model might allow for 

enhanced rehabilitation team planning, improved patient and family education, and better 

use of health care resources. 
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CHAPTER 3. A STOCHASTIC MODEL FOR CHRONIC CARE CYCLE 

3.1 System Description 

In this section, a stochastic process model is developed to analyze the health care 

transitions for a single patient between the inpatient care setting and the home- and 

community-based care setting. With a series of homogeneity assumptions on costs and 

transition probabilities, the expected total cost for a patient during her whole health care 

transition process will be computed, based on which the optimal coverage LOS for each 

episode will be derived.  

Without loss of generality, we assume the health transition process contains N episodes in 

our model. There are four sets of states used to indicate the patient’s condition: inpatient 

care setting (𝐴𝑖), home- and community-based care setting (𝐵𝑖), recovery (R) and death 

(𝐷). The transitions between these states are illustrated in the following two diagrams. 

A1

B1

A2

B2

AN-1

BN-1

AN

R

D

p1
A

p1
B

p2
A

.

.

. pN-1
A

pN-1
B

1 - qN
A

q1
A

q1
B

q2
A

q2
B

qN-1
A

qN-1
B

qN
A

 

Figure 3.1 Care Transition Diagram between Settings 
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Figure 3.1 shows how the patient is transitioned between the inpatient care setting and the 

home- and community-based care setting. Initially, the patient is admitted by the inpatient 

care setting for the initial episode (𝐴1). Then a series of transitions will occur between 

the inpatient care setting (𝐴𝑖) and the home- and community-based care setting (𝐵𝑖), 

until one of two following conditions occurs: in one case, whenever the patient is staying 

in 𝐴𝑖 or 𝐵𝑖, it is possible for him to be cured and enter state R; in the other case, after N 

episodes, the insurer will no longer provide insurance coverage, thus the patient will 

eventually transition to state D. 

Ai1 Ai2 Ai3
Ai(m

i-1)

Aimi

Bi

A(i+

1)1

1-pi
A
-qi

A
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A
-qi

A
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A
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A
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A
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A
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A

1-qi
A

pi
B

pi
A

1-pi
B
-qi

B

R

qi
A

qi
B

Bi-1

pi-1
B

...

 

Figure 3.2 Care Transition Diagram within Settings 

 

During each inpatient episode, for instance, the 𝑖𝑡ℎ episode 𝐴𝑖(𝑖 ∈ [1, 𝑁]), the state 𝐴𝑖 is 

further decomposed to a series of states 𝐴𝑖𝑗(1 ≤ 𝑗 ≤ 𝑚𝑖), which indicates that the patient 

is on the 𝑗𝑡ℎ day in his 𝑖𝑡ℎ inpatient episode. During this episode, the patient will be 

covered for a maximum  𝑚𝑖 days.  For the first (𝑚𝑖 − 1) days, after each day staying in 

the inpatient care setting, she will encounter three conditions: 1) being transitioned to the 
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home- and community-based care setting 𝐵𝑖+1 with a constant probability 𝑝𝑖
𝐴; 2) being 

cured and entering state R with a constant probability 𝑞𝑖
𝐴; or 3) continue to stay at the 

inpatient care setting for another day with probability (1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴). After the 𝑚𝑖
𝑡ℎ day, 

if the patient is still not cured, she will be forcedly transitioned to 𝐵𝑖+1 with probability 

(1 − 𝑞𝑖
𝐴). The subscript (𝑖 + 1) indicates that the patient is transitioned from the 𝑖𝑡ℎ 

episode in the inpatient care setting.  

After the patient enters the home- and community-based care setting for a particular time, 

for instance, the 𝑖𝑡ℎ time being in the home- and community-based care setting 

𝐵𝑖(𝑖 ∈ [1, 𝑁 − 1]), similarly, after each day staying in this center, she will also encounter 

three conditions: 1) being readmitted by the inpatient care setting 𝐴𝑖+1 with a condition 

probability 𝑝𝑖
𝐵; 2) being cured and enters state R with a condition probability 𝑞𝑖

𝐵; or 3) 

remaining at the home- and community-based care setting for another day with 

probability (1 − 𝑝𝑖
𝐵 − 𝑞𝑖

𝐵). Note that there will be no limit on the insured LOS at the 

home- and community-based care setting. Finally, after being transitioned to state R or D, 

the patient will never enter the inpatient care setting or the home- and community-based 

care setting again. These two states are absorbing states, while states 𝐴𝑖𝑗  𝑎𝑛𝑑 𝐵𝑖 are 

transient states. 

3.2 Steady State Analysis: Expected Total Cost over N Episodes 

In order to optimize the coverage LOS, denoted by  𝑚𝑖 , during each episode i, we analyze 

the steady state of the system and derive the expected total cost over N episodes. The 

insurance plan will cover the cost of staying and transitions for the patient. Therefore, the 

total cost C consists of four parts: the total cost of staying in the inpatient care setting 
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(𝐶𝑆
𝐴) and in the home- and community-based care setting (𝐶𝑆

𝐵), as well as the total cost of 

transition from the inpatient care setting to the home- and community-based care setting 

(𝐶𝑇
𝐴), and from the home- and community-based care setting to the inpatient care setting 

(𝐶𝑇
𝐵). For the 𝑖𝑡ℎ episode, the daily cost of staying in the inpatient care setting is 𝑐𝑆

𝐴𝑖, and 

the one-time cost of forced transition is 𝑐𝑇
𝐴𝑖. While when the patient stays in 𝐵𝑖, the daily 

cost of staying in the home- and community-based care setting is 𝑐𝑆
𝐵𝑖, and the one-time 

cost of transiting to the inpatient care setting for readmission  is 𝑐𝑇
𝐵𝑖. The daily cost of 

staying in the inpatient care setting 𝑐𝑆
𝐴𝑖 is higher than staying in the home- and 

community-based care setting 𝑐𝑆
𝐵𝑖.  

With the introduced notation above, the objective function of the model, which is a 

function of the coverage LOS for each episode  𝑚1, 𝑚2, ⋯ , 𝑚𝑁, is presented as: 

𝐶(𝑚1, 𝑚2, ⋯ , 𝑚𝑁) = (𝐶𝑆
𝐴 + 𝐶𝑆

𝐵) + (𝐶𝑇
𝐴 + 𝐶𝑇

𝐵)

= ∑[𝑐𝑆
𝐴𝑖𝑃𝐸

𝐴𝑖𝐸(𝑇𝑖
𝐴)]

𝑁

𝑖=1

+ ∑[𝑐𝑆
𝐵𝑖𝑃𝐸

𝐵𝑖𝐸(𝑇𝑖
𝐵)]

𝑁−1

𝑖=1

+ ∑(𝑐𝑇
𝐴𝑖𝑃𝐸

𝐴𝑖𝑃𝐹
𝐴𝑖)

𝑁

𝑖=1

+ ∑(𝑐𝑇
𝐵𝑖𝑃𝐸

𝐴𝑖+1)

𝑁−1

𝑖=1

 

To derive the expected total cost over N episodes, three groups of intermediate variables 

need to be calculated: the probability of entering each setting during a care cycle, i.e. 

𝑃𝐸
𝐴𝑖 , 𝑃𝐸

𝐵𝑖, the expected LOS in each setting during each care cycle, i.e. 𝐸[𝑇𝑖
𝐴], 𝐸[𝑇𝑖

𝐵], and 

the probability of forced transition after each inpatient care episode, i.e. 𝑃𝐹
𝐴𝑖. 

Whether the patient is staying in the inpatient care setting or the home- and community-

based care setting, after each day, she will probably be cured and leave the system. It is 
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possible that she will not go through all N episodes, or equivalently all (2𝑁 − 2) 

transitions. Therefore, when trying to derive the expected lengths of stay in settings as 

well as the transition costs, these dwelling durations and transitions are conditioned on 

whether the transition will occur and whether the patient will enter a setting for a 

particular episode. 

 Probability of Entering a Setting 

Let 𝑃𝐸
𝐴𝑖 , 𝑃𝐸

𝐵𝑖 denote the probabilities that the patient will enter the inpatient care setting or 

the home- and community-based care setting for the 𝑖𝑡ℎ episode. It is related to the 

probability that the patient will not be cured during her  𝑖𝑡ℎ time staying in the inpatient 

care setting or the home- and community-based care setting, which are denoted as 𝑃𝑆
𝐴𝑖 , 𝑃𝑆

𝐵𝑖. 

Thus, the following relations exist. 

𝑃𝐸
𝐴𝑖 = ∏(𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘)

𝑖−1

𝑘=1

, 𝑃𝐸
𝐵𝑖 = ∏(𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘)

𝑖−1

𝑘=1

𝑃𝑆
𝐴𝑖 

For state 𝐴𝑖, the probability of not being cured will be conditioned on the probability that 

the patient will stay for j days, which is  

𝑃𝑆
𝐴𝑖 = ∑(𝑃𝑆

𝐴𝑖|𝐿𝑂𝑆 = 𝑗)𝑃𝑗
𝐴𝑖

𝑚𝑖

𝑗=1

=
𝑝𝑖

𝐴 + 𝑞𝑖
𝐴(1 − 𝑝𝑖

𝐴 − 𝑞𝑖
𝐴)

𝑚𝑖

𝑝𝑖
𝐴 + 𝑞𝑖

𝐴  

Similarly, for state 𝐵𝑖, the probability of not being cured will also be conditioned the 

probability that the patient will stay for j days, which is  

𝑃𝑆
𝐵𝑖 = ∑(𝑃𝑆

𝐵𝑖|𝐿𝑂𝑆 = 𝑗)𝑃𝑗
𝐵𝑖

∞

𝑗=1

=
𝑝𝑖

𝐵

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵 

The proof can be referred in Appendix A. 
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 Expected LOS in Each Setting for Each Time 

For states 𝐴𝑖, based on the probability that the patient will stay for j days 𝑃𝑗
𝐴𝑖, given the 

condition that she enters 𝐴𝑖, the expected LOS is 

E[𝑇𝑖
𝐴] = ∑ 𝑗𝑃𝑗

𝐴𝑖

𝑚𝑖

𝑗=1

= 𝑚𝑖(1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴)
𝑗−1

+ ∑ 𝑗(1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴)
𝑗−1

(𝑝𝑖
𝐴 + 𝑞𝑖

𝐴)

𝑚𝑖−1

𝑗=1

=
1 − (1 − 𝑝𝑖

𝐴 − 𝑞𝑖
𝐴)

𝑚𝑖

𝑝𝑖
𝐴 + 𝑞𝑖

𝐴  

Similarly, for states 𝐵𝑖, based on the probability that the patient will stay for j days 𝑃𝑗
𝐵𝑖, 

given the condition that she enters 𝐵𝑖, the expected LOS is 

𝐸(𝑇𝑖
𝐵) = ∑ 𝑗𝑃𝑗

𝐵𝑖

∞

𝑗=1

= ∑ 𝑗(1 − 𝑝𝑖
𝐵 − 𝑞𝑖

𝐵)𝑗−1(𝑝𝑖
𝐵 + 𝑞𝑖

𝐵)

∞

𝑗=1

 =
1

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵 

 Probability of Forced Transition 

Forced transitions will occur when the patient is not cured, instead being transited after 

𝑚𝑖 days during the 𝑖𝑡ℎ episode. Therefore, given the condition that the patient enters 𝐴𝑖, 

the probability that the patient will be forcedly transited is 

𝑃𝐹
𝐴𝑖 = (1 − 𝑝𝑖

𝐴 − 𝑞𝑖
𝐴)

𝑚𝑖−1
(1 − 𝑞𝑖

𝐴) 

Additionally, it is obvious that before the initial inpatient episode, the patient is not cured 

for sure. Therefore, for the simplicity of calculation, 

𝑃𝑆
𝐴0 = 1, ∏ 𝑃𝑆

𝐴𝑘

𝑖

𝑘=1

= ∏ 𝑃𝑆
𝐴𝑘

𝑖

𝑘=0
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3.3 Optimization of the Covered Episodes and LOS 

Given all the transition probabilities and unit costs, the expected total cost C will be a 

function of coverage LOSs for each episode 𝑚1, 𝑚2, … , 𝑚𝑁, as follows.  

𝐶(𝑚1, 𝑚2, … , 𝑚𝑁)

= ∑ [𝑐𝑆
𝐴𝑖 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖−1

𝑘=0

)
1 − (1 − 𝑝𝑖

𝐴 − 𝑞𝑖
𝐴)

𝑚𝑖

𝑝𝑖
𝐴 + 𝑞𝑖

𝐴 ]

𝑁

𝑖=1

+ ∑ [𝑐𝑆
𝐵𝑖 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖−1

𝑘=0

) 𝑃𝑆
𝐴𝑖

1

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵]

𝑁−1

𝑖=1

+ ∑ [𝑐𝑇
𝐴𝑖 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖−1

𝑘=0

) 𝑃𝐹
𝐴𝑖]

𝑁

𝑖=1

+ ∑ [𝑐𝑇
𝐵𝑖 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖

𝑘=0

)]

𝑁−1

𝑖=1

 

The optimal 𝑚1
∗ , 𝑚2

∗ , … , 𝑚𝑁
∗  can be decided by the properties of the partial derivatives of 

C over 𝑚𝑖. And under certain assumptions, it is proved that the best decision will be 

cover the first 𝑛 episodes without limited LOS, and not cover the rest episodes at all, i.e., 

𝑚1
∗ = 𝑚2

∗ = ⋯ = 𝑚𝑛
∗ = ∞, 𝑚𝑛+1

∗ = 𝑚𝑛+2
∗ = ⋯ = 𝑚𝑁

∗ = 0 

It is proved by two theorems. The first theorem proves that for each episode 𝐴𝑖, the total 

cost is always monotonic over 𝑚𝑖. The second theorem proves that under certain 

assumptions, if the best decision is to cover  𝑛 episodes, then the optimum will be cover 

the first 𝑛 episodes, and not cover the subsequent episodes. 

 Bang-bang Control 

Given the total number of considered episodes N, for any arbitrary episode 𝐴𝑖, the total 

cost C is always monotonic over the coverage LOS is always monotonic over 𝑚𝑖. 
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Whether the total cost will monotonically increase or decrease is decided by both the unit 

cost of staying and transition, and the transition probabilities. 

It can be prove by mathematical induction. First, it is proved that given the total number 

of covered episodes N, for the last episode 𝐴𝑁, the expected total cost C is always 

monotonic over 𝑚𝑁. Next it is proved that given arbitrary episode 𝐴𝑖, if the expected 

total cost is monotonic over 𝑚𝑖, then if the total number of considered episodes is 

increased by 1, the new expected total cost will also be monotonic over 𝑚𝑖. With these 

two steps, the monotonicity over arbitrary 𝑚𝑖 is established. 

Proposition 1: Given the total number of considered episode N, the total cost C is 

monotonic over the coverage LOS of the last episode 𝒎𝑵. Specifically when 

condition 

[−𝒄𝑺
𝑨𝑵 (∏ 𝑷𝑺

𝑨𝒌𝑷𝑺
𝑩𝒌

𝑵−𝟏

𝒌=𝟎

)
𝟏 − 𝒑𝑵

𝑨 − 𝒒𝑵
𝑨

𝒑𝑵
𝑨 + 𝒒𝑵

𝑨
+ 𝒄𝑻

𝑨𝑵 (∏ 𝑷𝑺
𝑨𝒌𝑷𝑺

𝑩𝒌

𝑵−𝟏

𝒌=𝟎

) (𝟏 − 𝒒𝑵
𝑨 )] 𝐥𝐧(𝟏 − 𝒑𝑵

𝑨 − 𝒒𝑵
𝑨 )

< 𝟎 

is satisfied, the partial derivative of C over 𝒎𝑵 will always be less or equal to 0, 

regardless of the value of 𝒎𝑵. While when condition 

[−𝒄𝑺
𝑨𝑵 (∏ 𝑷𝑺

𝑨𝒌𝑷𝑺
𝑩𝒌

𝑵−𝟏

𝒌=𝟎

)
𝟏 − 𝒑𝒊

𝑨 − 𝒒𝒊
𝑨

𝒑𝒊
𝑨 + 𝒒𝒊

𝑨
+ 𝒄𝑻

𝑨𝑵 (∏ 𝑷𝑺
𝑨𝒌𝑷𝑺

𝑩𝒌

𝑵−𝟏

𝒌=𝟎

) (𝟏 − 𝒒𝒊
𝑨)] 𝐥𝐧(𝟏 − 𝒑𝒊

𝑨 − 𝒒𝒊
𝑨)

> 𝟎 

is satisfied, the partial derivative of C over 𝒎𝑵 will always be greater or equal to 0, 

regardless of the value of 𝒎𝑵. 

The proof can be referred in Appendix B. 
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Proposition 2: Given the maximum number of considered episode 𝑵 and an 

arbitrarily given episode 𝑨𝒊, If the total cost C is monotonic over 𝒎𝒊, when the 

maximum number of covered episode is increased by 1, the incremental cost will  

also be monotonic over 𝒎𝒊. 

This proposition gives the situation when the insurer decide to consider covering one 

more episode for 𝑚𝑁+1 days. When the coverage LOSs for previous episodes remain 

unchanged, the increased expected cost is defined as the incremental cost ∆𝐶(𝑚𝑁+1). 

∆𝐶(𝑚𝑁+1) = 𝐶(𝑚1, 𝑚2, … , 𝑚𝑁 , 𝑚𝑁+1) − 𝐶(𝑚1, 𝑚2, … , 𝑚𝑁) 

The partial derivative of incremental cost over 𝑚𝑖 will be in the form of  

𝜕∆𝐶(𝑚𝑁+1)/𝜕𝑚𝑖 = 𝑌𝑁+1(1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴)
𝑚𝑖

 

in which 𝑌𝑁+1 is a function independent of 𝑚𝑖.  

The proof can be referred in Appendix C. 

Theorem 1: Given the maximum considered episode N, for any episode 𝑨𝒊, the 

expected total cost C will always be monotonic over 𝒎𝒊. Specifically when condition  

𝝏𝑪(𝒎𝟏, 𝒎𝟐, … , 𝒎𝒊)

𝝏𝒎𝒊
+

𝝏∆𝑪(𝒎𝒊+𝟏)

𝝏𝒎𝒊
+ ⋯ +

𝝏∆𝑪(𝒎𝑵)

𝝏𝒎𝒊

= [𝑿𝑵 + ∑ 𝒀𝒌(𝟏 − 𝒑𝒊
𝑨 − 𝒒𝒊

𝑨)

𝑵

𝒌=𝒊+𝟏

] (𝟏 − 𝒑𝒊
𝑨 − 𝒒𝒊

𝑨)
𝒎𝒊−𝟏

< 𝟎   

is satisfied, the partial derivative of C over 𝒎𝒊 will always be less or equal to 0, 

regardless of the value of 𝒎𝒊. While when condition  

[𝑿𝑵 + ∑ 𝒀𝒌(𝟏 − 𝒑𝒊
𝑨 − 𝒒𝒊

𝑨)

𝑵

𝒌=𝒊+𝟏

] (𝟏 − 𝒑𝒊
𝑨 − 𝒒𝒊

𝑨)
𝒎𝒊−𝟏

> 𝟎  
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is satisfied, the partial derivative of C over 𝒎𝒊 will always be greater or equal to 0, 

regardless of the value of 𝒎𝒊. 

The proof can be referred in Appendix D. 

 Control Limit 

Under certain assumptions, it can also be proved that given 𝑁, the maximum number of 

episodes, there will be certain control limit 𝑛 so that if 𝑁 > 𝑛, the insurer should covered 

only the first 𝑛 episode without limited LOS. On the other hand, if 𝑁 ≤ 𝑛, the insurer 

should cover all 𝑁 episodes and each of the covered episodes should not be imposed by 

any limitation on the coverage LOS. 

Specifically, two assumptions are made. In terms of the transition probabilities, it is 

assumed that the probability of being transferred to the home- and community-based care 

setting will decrease after every episode, i.e. 𝑝𝑖+1 < 𝑝𝑖, and the probability of being cured 

will significantly decrease after every episode, i.e. 𝑞𝑖+1 ≪ 𝑞𝑖. While in terms of the cost, 

the daily cost of staying will significantly increase after every episode, i.e. 𝑐𝑆
𝐴𝑖+1 ≫ 𝑐𝑆

𝐴𝑖, but 

the cost of forced transition after every episode will remain the same, i.e. 𝑐𝑇
𝐴𝑖+1 = 𝑐𝑇

𝐴𝑖. 

Proposition 3: Given two consecutive episodes, if only one of them will be covered, 

then the expected total cost for covering the earlier episode will always be greater 

than the expected total cost for covering the latter episode. 

The proof can be referred in Appendix E. 

Theorem 2: Given the maximum number of considered episodes N, if the decision is 

to cover 𝑵∗ of the N episodes, then it will be best to only cover the first 𝑵∗ episodes 

without limited LOS, and not cover the subsequent episodes. 
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Theorem 2 can be proved by contradiction. Assume that the optimal decision is to cover 

𝑁∗ episodes, but not the first 𝑁∗ episode. Therefore, there must be one covered episode 𝑖, 

with the (𝑖 − 1)𝑡ℎ episode not covered. However, according to Proposition 3, it will be 

better to cover the (𝑖 − 1)𝑡ℎ episode, and not cover the 𝑖𝑡ℎ episode. Therefore, the given 

decision cannot be optimal. Q.E.D. 

 Relationship between Forced Transition Cost and Optimal Number of Covered 

Episodes 

Since in the health care transition system, the cost of forced transition is one of the most 

important factors in the decision making of the insurer. Therefore, this part also proposes 

a theorem on the relationship between the cost of forced transition and the optimal 

number of covered episodes. 

Theorem 3: Given the maximum number of considered episodes 𝑵, if the previous 

decision is to cover the first 𝒏 of the 𝑵 episodes, then when condition 

𝒄𝑻
𝑨𝒏+𝟏 + (𝟏 − 𝑷𝑺

𝑨𝒏+𝟏) ∑ ( ∏
𝒑𝒋

𝑩

𝒑𝒋
𝑩 + 𝒒𝒋

𝑩

𝒊

𝒋=𝒏+𝟏

) 𝒄𝑻
𝑨𝒊

𝑵

𝒊=𝒏+𝟐

> 𝒄𝑺
𝑨𝒏+𝟏

𝟏

𝒑𝒏+𝟏
𝑨 + 𝒒𝒏+𝟏

𝑨

− (𝟏 − 𝑷𝑺
𝑨𝒏+𝟏) [𝒄𝑺

𝑩𝒏+𝟏
𝟏

𝒑𝒏+𝟏
𝑩 + 𝒒𝒏+𝟏

𝑩
+ 𝒄𝑻

𝑩𝒊+𝟏
𝒑𝒏+𝟏

𝑩

𝒑𝒏+𝟏
𝑩 + 𝒒𝒏+𝟏

𝑩

+ ∑ ( ∏
𝒑𝒋

𝑩

𝒑𝒋
𝑩 + 𝒒𝒋

𝑩

𝒊

𝒋=𝒏+𝟏

) (𝒄
𝑺

𝑩𝒋 𝟏

𝒑𝒊
𝑩 + 𝒒𝒊

𝑩
+ 𝒄𝑻

𝑩𝒋 𝒑𝒊
𝑩

𝒑𝒊
𝑩 + 𝒒𝒊

𝑩
)

𝑵

𝒊=𝒏+𝟐

] 

is satisfied, it is better to cover one more episode. 

The proof can be referred in Appendix F. 
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3.4 Numerical Study 

In this section, we apply our model to a case study, and draw some conclusions. On one 

hand, we analyze the relationship between cost and covered episodes, on the other hand, 

by conducting sensitivity analysis, we study the relationship between maximum number 

of considered episodes and optimal number of covered episodes, as well as the 

relationship between penalty/transition cost and optimal number of covered episodes. 

 Case Description 

In our case study, we assume that the patient with some disease, will normally go through 

no more than 10 episodes, and the cost will be covered by an insurance plan approved in 

advance.  

For each episode, if the insurer decides to cover it, then it will cover the patient until she 

is being cured or good enough to be naturally transited a community center, and the cost 

of staying in the episode is covered. While if the insurer decides not to cover it, since it 

would be harmful for the patient, the insurer will face a large amount of penalty. The 

more episodes the insurer decides not to cover, the higher penalty it will face. When the 

patient is in the community center, the cost of staying is covered. Also, if the patient gets 

deteriorated and has to be readmitted by the inpatient care setting, the insurer also needs 

to cover the cost of transition. 

Based on the cost and survival rates for each episode, the insurer needs to make a 

decision on how many episodes, and which episodes should be covered by the insurance 

plan, so that the expected total cost for each patient will be minimized.  
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 Parameter Estimation 

According to the statistical analysis based on a data set of Medicare beneficiaries who 

had traumatic brain injury, the expected LOS within the first episode will be 12 days, 

therefore the probability of being transferred out will be 𝑝1
𝐴 + 𝑞1

𝐴 = 0.08. Also, 

according to the data, 73% of them will stay in the community for the 2 years, which is 

considered being cured, therefore 𝑝1
𝐴 = 0.02, 𝑞1

𝐴 = 0.06. As for the remaining episodes a 

patient may enter due to readmission, we assume that after each episode, the probability 

of being cured will decrease by 40%, and the probability of being transited to the 

community will decrease by 20%. For a patient in the community, the expected LOS is 

about 30 days, without significant difference among different times of being admitted. 

Therefore, the probability of being readmitted and being cured is approximately identical 

through different times of being in the community, which is 𝑝𝑖
𝐵 = 0.027, 𝑞𝑖

𝐵 = 0.003. 

With the same data set, we estimate the daily cost in the first episode to be 316.5, and for 

the subsequent episodes, the average incremental daily cost is about 20%. Therefore, 

𝑐𝑆
𝐴𝑖 = 316.5 ∗ 1.2𝑖−1. While for the community center, the daily cost of staying is 

approximately stable as 𝑐𝑆
𝐵𝑖 = 10.768. Also, it is observed that for the community center, 

there is a fixed cost, which can be considered as the transition cost from the community 

center to the inpatient care setting, which is 𝑐𝑇
𝐵𝑖 = 130.15. In addition, the insurer can 

choose to cover an episode (without limitation on the insured LOS) or not cover the 

episode at all. However, if the insurer chooses not to cover an episode, since it would be 

harmful for the patient, there will be a large amount of penalty 𝑐𝑇
𝐴𝑖 = 10000.  
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 Relationship between Cost and Covered Episodes 

According to theorem 2, the best decision for the insurer will always be cover the first 𝑛 

episode, and not cover the last (10 − 𝑛) episode. Thus, the problem will be determining 

the best 𝑛. 

According to the calculation, the relationship between the expected total cost per capita 

and covered episodes 𝑛 is illustrated as follows. The optimal decision will be cover the 

first 4 episode, with which the expected cost for each patient will be 7489. 

 

Figure 3.3 Relationship between Cost and Covered Episodes  
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cost of staying and penalty, as well as the current and future cost, it is concluded that the 

best decision will be cover the first four episodes. 

 Sensitivity Analysis 

3.4.4.1 Relationship between N and n* 

In general, when N, the maximum number of considered episodes increases, the 

opportunity cost for a specific insurance plan will also increase, which encourages the 

insurer to cover more episodes to lower down the risk of high penalty. According to the 

numerical study, when N increases from 1 to 50, the optimal number of covered episodes 

n* also increases from 1 to 5. 

However, since the patient is likely to be cured in earlier episodes, the probability of 

entering future episodes is decreasing, which implies that if one more episode is 

considered, the expected total cost will increase, but the cost incremental will decrease. 

Convergence is shown for the optimal number of covered episodes. Specifically, when 16 

or more episodes are considered, the optimum will be 5 episodes, and will not continue to 

increase as N increases.    

 

Figure 3.4 Relationship between N and n* 
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For the expected cost of the optimum, convergence is also noticed. It is shown that if the 

insurer decides to cover 5 episodes, as the number of considered episodes increases, the 

expected cost will also increase, but the cost incremental is decreasing. When considering 

50 episodes, the expected cost for covering 5 episodes is 7825, and it can be observed 

that if N continues to increase, the expected cost will converge to about 7830. 

 

Figure 3.5 Relationship between N and Expected Cost 
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In the baseline case, by varying parameter value of penalty based on Theorem 3, it is 

shown that when the penalty is greater than $14,400, the insurer will choose to cover 5 

episodes. If the penalty is less than $6,600, the insurer will choose to cover only 3 

episodes. If penalty continues to increase (decrease), then the insurer will cover more 

(less) episodes. The following line chart shows the relationship between penalty and n*. 

When the penalty increases from 0 to 600,000, the optimal n* will switch from 0 all 

along to 10. 

 

Figure 3.6 Relationship between Penalty and n* 
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According to the properties of the partial derivatives, it is proved that for each episode, 

there exists a bang-bang control policy. That is, the optimal solution for each coverage 

LOS is either 0 or infinity. Further, under certain assumptions on the monotonicity of cost 

and transition probabilities, it is also proved that there exists a control limit on which 

episodes to cover, i.e., the best option is always to cover the first several episodes 

entirely, and then stop covering at all in the remaining episodes. 

In the sensitivity analysis of our numerical study, two important parameters are 

discussed: the total number of considered episodes and the penalty (forced transition 

cost). Increasing the total number of considered episodes will encourage the insurer to 

cover more episodes. However, as the number of considered episodes increases, both the 

expected total cost and the optimal number of covered episodes will coverage. Increasing 

the penalty will also encourage the insurer to cover more episodes. As the penalty is 

increased to some large number, the optimal decision will switch from not covering any 

episodes to covering all episodes.  
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CHAPTER 4. A SIMULATION MODEL FOR THREE-LAYER REHABILITATION 

SERVICE PROCESS 

4.1 The Use of Simulation 

The analytical stochastic model presents a good way to describe the health care 

transitions between an inpatient care setting and home- and community-based care 

setting. However, since homogeneity assumptions are used on cost and transition 

probabilities, it may be inadequate when dealing with the transitions among different 

levels of services, for which non-linear cost and transition probability functions are more 

appropriate.  

In order to better evaluate the impact of coverage LOS on various performances in a care 

transition system, we developed a simulation model for three-layer rehabilitation service 

processes. This simulation model is based on VBA, which is compatible with Microsoft 

Excel. By developing a Microsoft Excel Macro, both the logical programs in VBA and 

statistical functions in Excel can be fully integrated, which provides a very effective way 

to simulate the system. 

4.2 Simulation Modeling Development 

 Conceptual Design 

This model simulates the transitions of a single patient between three categories of 

rehabs: primary rehab (A1), secondary rehab (A2) and tertiary rehab (B). Generally, 
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patients will enter the system by being admitted by primary rehab with highest utility and 

cost. After staying for some days, she will be transitioned to tertiary rehab with lowest 

utility and cost, stay here until she gets deteriorated and has to be transitioned to 

secondary rehab with moderate utility and cost. For some patients, there may be multiple 

transitions between secondary and tertiary rehabs. By simulating with different coverage 

LOS setting for primary and secondary rehab, this simulation model will decide the 

optimal coverage LOS at each rehab layer, and minimize the total cost. 
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Figure 4.1 Simulation Flow Chart 

 

At the beginning of the simulation, a patient is created. When entering the simulation 

model, a series of parameters on costs and transition probabilities are assigned to the 

model.  

During the simulation, the patient will be transitioned among three states: 𝐴1, 𝐵 𝑜𝑟 𝐴2. 

When the patient enters one state, a random number will be generated. Then this number 

will be looked up in the Kaplan–Meier survival analysis table and compared with the 

given survival probabilities, with which the LOS in this state will be decided. Then, the 
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LOS will be plugged in the regressed cost functions and decide the cost in this rehab. 

After recording the LOS and total cost, the patient will be transitioned to the next state. 

At the end of the simulation duration, two outcomes will be evaluated for this individual 

patient: the total cost and the total number of transitions from tertiary rehab to secondary 

rehab within 720 days. On one hand, every time the patient leaves a state, the cost within 

this states will be calculated. On the other hand, every time the patient enters state 𝐴2, 

there will be a counter which records and updates the number of transitions. 

Additionally, after simulating the baseline case, we will then include the decision 

variables for the optimization simulation model: the coverage LOSs for the primary and 

secondary rehabs. Every time when the LOS in states 𝐴1 𝑜𝑟 𝐴2 is generated, it will be 

compared with the coverage LOS. When the generated LOS is longer than the coverage 

LOS, then the patient will leave the state after the coverage LOS expires. In this case, the 

uncovered LOS will be recorded and updated as necessity information, which will affect 

the survival probability and LOS in state B.  

The necessity variable at the beginning of simulation is 1. Every time when a patient 

leaves the primary or secondary rehab, if the generated LOS is larger than the coverage 

LOS, then the necessity variable will be updated to the ratio of coverage LOS to 

generated LOS. For example, when the coverage LOS in secondary rehab is 30 days, and 

generated LOS is 40 days, then the necessity will decrease to 30/40 = 0.75. Therefore, 

the LOS will be decreased, and the risk of being transitioned back to secondary rehab will 

be increased.  
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 Input Modeling 

We use cost and utilization data collected from Indiana Medicaid beneficiaries who 

suffered from initial modest-to-severe traumatic brain injury and received rehabilitation 

services. This simulation model intends to describe the care transition system for patients 

with homogeneity on service requirement at each rehab facility. These patients are with 

ICD-9 ranging from 801 to 803 (described as “Fracture of base of skull, fracture of face 

bones, other and unqualified skull fractures”) and a short acute-hospitalization LOS 

(ranging from 3 to 21 days). The input modeling contains two parts: input cost modeling 

and input LOS modeling. 

According to the data, 64.3% of the patient will only transition once from the primary 

rehab to the tertiary. Since these patients do not require more transitions, we define them 

as low risk patients. While the remaining 35.7% will go through several transitions 

between the secondary and tertiary rehab, we define them as high risk patients.  Since 

high risk patients will incur higher cost and more transitions, this simulation model will 

focus on these patients. 

4.2.2.1 Input LOS Modeling 

First, the LOSs in all three levels of rehabs are estimated by Kaplan-Meier survival 

analysis.  

The likelihood of a patient being discharged from her current location was represented 

using a survival function of the current LOS via Kaplan-Meier analysis (Kaplan & Meier, 

1958). The Kaplan-Meier estimator is used to estimate the survival function of the 

patients from lifetime data, which, in this case would be the LOS at a particular facility 
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obtained from the claims data. This survival function captures the probability that a 

patient will survive, which, in this case represents the probability that a patient will 

continue to stay in her current rehab an additional day. Using Kaplan-Meier analysis 

allows estimation of survival over time, even when patients drop out or are studied for 

different lengths of time. 

For each day, the survival probability is estimated as the number of patients surviving 

divided by the number of patients at risk. Patients who have dropped out or not reached 

the current day of study due to some reason are censored and thus not accounted for in 

the number of patients at risk. The lifetime of a patient in any rehab facility which 

represents the LOS is estimated from the cumulative probability of surviving each day. 

This LOS has an upper bound that is bounded by the maximum LOS at each facility. 

Therefore, at any time t<T, where T is the upper bound, the set of transition probabilities 

between one rehab and another can be obtained from the survival model. The below 

figure represents the survival curve for patients receiving care at the primary rehab. 

 

Figure 4.2 Survival Curve 
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4.2.2.2 Input Cost Modeling 

Once the LOS in each rehab is inputted, then we can decide the related cost within each 

rehab. The costs in the model are estimated with polynomial regression models. With the 

data in LOS and its related total cost, we can use polynomial functions to represent the 

relationship. According to the polynomial functions, since the y intercept is not equal to 

0, we consider it to be the fixed cost, or transition cost. Due to the imperial meaning of 

the cost function, both the y intercept and slop should be positive. Thus, any data points 

in this regression model that drove either the y intercept or slope in the negative direction 

are identified as outliers and eliminated. The functions are regressed with linear, 

quadratic or cubic models, and we use R-square values to verify the goodness of fit for 

the regression model, and choose the one with good fitness and lower order. The figure 

below represents the regression model for the cost in the secondary rehab as a function of 

the LOS. 

 

Figure 4.3 Regressed Cost Function 
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 Verification and Validation 

After inputting the system and parameters into the simulation model, we run the baseline 

case for verification and validation. 

First, we run the model for one replication and one single patients, and record all the 

LOSs and costs during the whole process. According to the below table, after leaving 𝐴1, 

she has been transitioned between 𝐵 and 𝐴2, being admitted by 𝐵 for five times and by 

𝐴2 for four times. The total LOSs add up to 730 days, which is two years. The total cost 

is $25158.42. This run perfectly verifies the model, showing the right pathway of the 

patient in the system, and also generated right LOSs and costs. 

Table 4.1 Verification 

State LOS (days) Cost ($) 

𝑨𝟏 26 8092.862 

𝑩 388 3133.537 

𝑨𝟐 4 1192.806 

𝑩 64 821.0522 

𝑨𝟐 5 1458.91 

𝑩 37 628.3451 

𝑨𝟐 9 3505.306 

𝑩 124 1249.29 

𝑨𝟐 10 4262.4 

𝑩 63 813.9149 

Sum 730 25158.42 

 

After verification, we increase the number of replications, and validate the model. Here, 

in order to simplify the gathering and analysis of statistics, we uses batch mode and have 

50 runs in each replication. Then, in order to decide the replication of the simulation, we 

choose the patient’s total cost as the indicator. We collected the simulated cost data, and 

average them over each replication to observe their trend. The following line graph shows 

the relationship between the number of replications and the average total cost. It indicates 
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that after about 100 replications, the average total cost over replications has converged, 

indicating 100 replications is large enough and the results is statistically significant. 

Therefore, we run 100 replications and 50 runs in each replication. 

 

Figure 4.4 Average Total Cost over Number of Replication 
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Secondary rehab LOS for high 

risk patients (days) 

111.50 89.92 [89.71, 90.12] 

Tertiary rehab LOS for high 

risk patients (days) 

5.54 4.86 [4.76, 4.96] 

Total Cost for high risk 

patients ($) 

25,829  25,979 [25544.14, 

26413.03] 

 

4.3 Effect of Shortened LOS on Total Cost and Rehospitalization Number 

In the baseline case, the survival analysis indicates that the coverage LOS for the primary 

rehabs is roughly 30 days, the one for secondary rehab is roughly 20 days, and there is no 

limited LOS for tertiary rehab. According to the simulation data, for the high risk patient, 

the average total cost per capita is $25,829, and the average rehospitalization number (the 

incidence of transitions to secondary rehab) per capita is 7.58. In this section, we use the 

simulation model to assess the effect on the trend of total cost and number of transitions 

to secondary rehab, when we shorten the coverage LOS in primary or secondary rehab. 

First, we set the coverage LOS for secondary rehab to the baseline case, 20 days, while 

shortening the coverage LOS for primary rehab. According to the simulation, when the 

coverage LOS for primary rehab decreases from 30 to 1, both the total cost and the 

rehospitalization number will monotonically increase. It indicates that when patients are 

not cured enough before leaving the primary rehab, she will need more future services in 

secondary rehab, and higher total cost will incur. Therefore, for the primary rehab, it is 

not beneficial to shorten the current coverage LOS. 
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Figure 4.5 Effect of Shortened LOS for Primary Rehab 
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Figure 4.6 Effect of Shortened LOS for Secondary Rehab 

 

4.4 Conclusions 
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CHAPTER 5. CONCLUSIONS 

In this thesis, we developed two models to describe and optimize the care transition 

system. Both models took a public health insurer’s viewpoint, and minimized the total 

cost for a single patient within the transition system by deciding the best care setting: 

covered number of episodes and coverage LOS for each episodes. 

First, we studied the problem of optimizing the number of episodes to cover and how 

many days to cover for a cyclic care delivery process. We modeled the randomness of 

the underlying transitions with a Markov process. We analyzed the steady-state 

condition and formulated a steady-state process optimization problem. In addition to 

the health condition of a patient, our Markov model also incorporates the inpatient 

LOS into the state description. This enables us to incorporate the effect of forced 

transitions. With this model, we drew three main conclusions. 

1) For each episode, there exists a bang-bang control policy. That is, the optimal 

solution for each covered LOS is either 0 or infinity. Further, under mild 

monotonicity assumptions on the costs and transition probabilities, it is also 

proved that there exists a control limit on which episodes to cover, i.e., the 

best option is always to cover the first several episodes entirely, and then stop 

covering the remaining episodes. 

2) Increasing the total number of considered episodes will encourage the insurer 

to cover more episodes. However, as the number of considered episodes 
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increases, both the expected total cost and the optimal number of covered 

episodes will coverage.  

3) Increasing the penalty will also encourage the insurer to cover more episodes. 

As the penalty increases to some large number, the optimal decision will 

switch from not covering any episodes to covering all episodes. 

Second, a simulation model was developed to assess the impact of LOS on the 

transitions between three levels of rehabilitations: primary rehab, secondary rehab 

and tertiary rehab. We modeled the relationships between LOS with cost and 

rehospitalization based on data collected from Indiana Medicaid beneficiaries who 

suffered from initial modest-to-severe traumatic brain injury and received 

rehabilitation services. We conducted polynomial regression and Kaplan–Meier 

analysis to estimate parameters, developed a discrete event simulation model to 

capture the stochastic transitions, and assessed the relationship between the coverage 

LOS and survival probability, as well as their joint effect on average total cost per 

capita and incidences of transition from tertiary to secondary rehab. In this model, we 

drew four major conclusions. 

In this model, we made three major conclusions. 

1) The patient in the studied cohort can be divided into two categories: low risk 

patients who keep staying in the tertiary rehab after leaving primary rehab, 

and high risk patients who need multiple transitions between the secondary 

and tertiary rehabs. 
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2) For the primary rehab, decreasing LOS from baseline will increase both total 

cost and number of readmission. In this case, the optimal LOS will be 30 days 

(current setting). 

3) For the secondary rehab, decreasing LOS from baseline will on one hand 

increase the number of readmission, and on the other hand decrease the total 

cost first and then dramatically increase it after a turning point. In this case, 

the optimal LOS will be 5 days. 

In our future research, for the stochastic process model, we will relax the 

homogeneity assumptions on the transition probabilities. In this paper, the transition 

probabilities are identical and independent within each episode, which may not fully 

capture the nature of the real world care transitions. For example, it makes more sense 

to assume that patient is more likely to leave in the first few days than after a longer 

LOS. In addition, we will model the cases where the transition probabilities are 

dependent on the coverage decisions. For example, with a longer coverage LOS 

during each episode, the patient will be less likely to be readmitted to the hospital.  

For the simulation model, first, we will further identity different transition patterns for 

the patients and classify them into more detailed categories to increase the accuracy 

of parameter estimation and system description. Second, since this thesis only 

considers a subset of the patients, we can extend the conceptual model to study 

multiple clinical pathways and their joint impact on the care delivery system. Also, 

with the support of larger sample size on LOS, we will use regression instead of 

Kaplan-Meier to model the transition probabilities, so that we can study the effect of 

increasing LOS from baseline on total cost and number of readmissions. 
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Appendix A Expected LOS in Each Setting for Each Time 

For states 𝐴𝑖, the patient will stay in this episode no more that 𝑚𝑖 days, and the 

probability of not being cured will be conditioned on his LOS of this episode. Given the 

condition that the patient enters 𝐴𝑖, the probability that the patient will stay for j days is 

𝑃𝑖
𝑗

= {
(1 − 𝑝𝑖

𝐴 − 𝑞𝑖
𝐴)

𝑗−1
(𝑝𝑖

𝐴 + 𝑞𝑖
𝐴), 𝑓𝑜𝑟 𝑗 ∈ [1, 𝑚𝑖 − 1]

(1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴)
𝑗−1

, 𝑓𝑜𝑟 𝑗 = 𝑚𝑖

 

Therefore, the probability that the patient will not be cured during this episode is 

𝑃𝑆
𝐴𝑖 = ∑(𝑃𝑆

𝐴𝑖|𝐿𝑂𝑆 = 𝑗)𝑃𝑗
𝐴𝑖

𝑚𝑖

𝑗=1

= ∑
𝑝𝑖

𝐴

𝑝𝑖
𝐴 + 𝑞𝑖

𝐴 (1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴)
𝑗−1

(𝑝𝑖
𝐴 + 𝑞𝑖

𝐴)

𝑚𝑖−1

𝑗=1

+ (1 − 𝑞𝑖
𝐴)(1 − 𝑝𝑖

𝐴 − 𝑞𝑖
𝐴)

𝑚𝑖−1
=

𝑝𝑖
𝐴 + 𝑞𝑖

𝐴(1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴)
𝑚𝑖

𝑝𝑖
𝐴 + 𝑞𝑖

𝐴  

For states 𝐵𝑖, the probability of not being cured will also be conditioned on his LOS in 

the home- and community-based care setting. Given the condition that the patient enters 

𝐵𝑖, the probability that the patient will stay for j days is 

𝑃𝑗
𝐵𝑖 = (1 − 𝑝𝑖

𝐵 − 𝑞𝑖
𝐵)𝑗−1(𝑝𝑖

𝐵 + 𝑞𝑖
𝐵), 𝑓𝑜𝑟 𝑗 ∈ [1, ∞] 

Therefore, the probability that the patient will not be cured during this episode is 

𝑃𝑆
𝐵𝑖 = ∑(𝑃𝑆

𝐵𝑖|𝐿𝑂𝑆 = 𝑗)𝑃𝑗
𝐵𝑖

∞

𝑗=1

= ∑
𝑝𝑖

𝐵

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵
(1 − 𝑝𝑖

𝐵 − 𝑞𝑖
𝐵)𝑗−1(𝑝𝑖

𝐵 + 𝑞𝑖
𝐵)

𝑚𝑖−1

𝑗=1

=
𝑝𝑖

𝐵

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵 
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Appendix B Proof of Proposition 1 

The partial derivative on total cost 𝐶 over the coverage LOS for the last episode 𝑚𝑁 is 

𝜕𝐶(𝑚1, 𝑚2, … , 𝑚𝑁)

𝜕𝑚𝑁

= [𝑐𝑆
𝐴𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=0

)
−(1 − 𝑝𝑁

𝐴 − 𝑞𝑁
𝐴)𝑚𝑁

𝑝𝑁
𝐴 + 𝑞𝑁

𝐴

+ 𝑐𝑇
𝐴𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=0

) (1 − 𝑞𝑁
𝐴)(1 − 𝑝𝑁

𝐴 − 𝑞𝑁
𝐴)𝑚𝑁−1]

′

= {[−𝑐𝑆
𝐴𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=0

)
1 − 𝑝𝑁

𝐴 − 𝑞𝑁
𝐴

𝑝𝑁
𝐴 + 𝑞𝑁

𝐴

+ 𝑐𝑇
𝐴𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=0

) (1 − 𝑞𝑁
𝐴)] (1 − 𝑝𝑁

𝐴 − 𝑞𝑁
𝐴)𝑚𝑁−1}

′

= [−𝑐𝑆
𝐴𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=0

)
1 − 𝑝𝑁

𝐴 − 𝑞𝑁
𝐴

𝑝𝑁
𝐴 + 𝑞𝑁

𝐴

+ 𝑐𝑇
𝐴𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=0

) (1 − 𝑞𝑁
𝐴)] (1 − 𝑝𝑁

𝐴 − 𝑞𝑁
𝐴)𝑚𝑁−1 ln(1 − 𝑝𝑁

𝐴 − 𝑞𝑁
𝐴) 

Let 

𝑋𝑁 = [−𝑐𝑆
𝐴𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=0

)
1 − 𝑝𝑁

𝐴 − 𝑞𝑁
𝐴

𝑝𝑁
𝐴 + 𝑞𝑁

𝐴 + 𝑐𝑇
𝐴𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=0

) (1 − 𝑞𝑁
𝐴)] 

Then, 

𝜕𝐶(𝑚1, 𝑚2, … , 𝑚𝑁)

𝜕𝑚𝑁
= 𝑋𝑁(1 − 𝑝𝑁

𝐴 − 𝑞𝑁
𝐴)𝑚𝑁−1 

In which 𝑋𝑁 is a function of a series of parameters without 𝑚𝑖. 
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When condition (Ι) 

𝑋𝑁 = [−𝑐𝑆
𝐴𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=0

)
1 − 𝑝𝑁

𝐴 − 𝑞𝑁
𝐴

𝑝𝑁
𝐴 + 𝑞𝑁

𝐴

+ 𝑐𝑇
𝐴𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=0

) (1 − 𝑞𝑁
𝐴)] ln(1 − 𝑝𝑁

𝐴 − 𝑞𝑁
𝐴) < 0  (I) 

is satisfied, then no matter what the value of 𝑚𝑁 is, the partial derivative will always be 

negative. Thus the cost will be decreasing monotonically along with the coverage LOS. 

Therefore, the insurer should cover this episode, and there should be no limited LOS. 

When condition (II) 

𝑋𝑁 = [−𝑐𝑆
𝐴𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=0

)
1 − 𝑝𝑖

𝐴 − 𝑞𝑖
𝐴

𝑝𝑖
𝐴 + 𝑞𝑖

𝐴

+ 𝑐𝑇
𝐴𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=0

) (1 − 𝑞𝑖
𝐴)] ln(1 − 𝑝𝑖

𝐴 − 𝑞𝑖
𝐴) > 0   (II) 

is satisfied, then no matter what the value of 𝑚𝑁 is, the partial derivative will always be 

positive. Thus the cost will be increasing monotonically along with the coverage LOS. 

Therefore, the insurer should not cover this episode. 
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Appendix C Proof of Proposition 2 

When the maximum number of covered episode is increase from 𝑁 to 𝑁 + 1, the 

increased cost will be 

𝐶(𝑚1, 𝑚2, … , 𝑚𝑁 , 𝑚𝑁+1) − 𝐶(𝑚1, 𝑚2, … , 𝑚𝑁)

= 𝑐𝑆
𝐴𝑁+1 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁

𝑘=0

)
1 − (1 − 𝑝𝑁+1

𝐴 − 𝑞𝑁+1
𝐴 )𝑚𝑁+1

𝑝𝑁+1
𝐴 + 𝑞𝑁+1

𝐴

+ 𝑐𝑆
𝐵𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=0

) 𝑃𝑆
𝐴𝑁

1

𝑝𝑁
𝐵 + 𝑞𝑁

𝐵

+ 𝑐𝑇
𝐴𝑁+1 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁

𝑘=0

) (1 − 𝑞𝑁+1
𝐴 )(1 − 𝑝𝑁+1

𝐴 − 𝑞𝑁+1
𝐴 )𝑚𝑁+1−1

+ 𝑐𝑇
𝐵𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁

𝑘=0

) 
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The partial derivative of the incremental cost over the coverage LOS for the 𝑖𝑡ℎ episode 

𝑚𝑖 is  

𝜕[𝐶(𝑚1, 𝑚2, … , 𝑚𝑁 , 𝑚𝑁+1) − 𝐶(𝑚1, 𝑚2, … , 𝑚𝑁)]

𝜕𝑚𝑖

= [𝑐𝑆
𝐴𝑁+1 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁

𝑘=0

)
1 − (1 − 𝑝𝑁+1

𝐴 − 𝑞𝑁+1
𝐴 )𝑚𝑁+1

𝑝𝑁+1
𝐴 + 𝑞𝑁+1

𝐴

+ 𝑐𝑆
𝐵𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=0

) 𝑃𝑆
𝐴𝑁

1

𝑝𝑁
𝐵 + 𝑞𝑁

𝐵

+ 𝑐𝑇
𝐴𝑁+1 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁

𝑘=0

) (1 − 𝑞𝑁+1
𝐴 )(1 − 𝑝𝑁+1

𝐴 − 𝑞𝑁+1
𝐴 )𝑚𝑁+1−1 + 𝑐𝑇

𝐵𝑁 (∏ 𝑃𝑆
𝐴𝑘𝑃𝑆

𝐵𝑘

𝑁

𝑘=0

)]

′

= {[𝑐𝑆
𝐴𝑁+1 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖−1

𝑘=0

) 𝑃𝑆
𝐵𝑖 ( ∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁

𝑘=𝑖+1

)
1 − (1 − 𝑝𝑁+1

𝐴 − 𝑞𝑁+1
𝐴 )𝑚𝑁+1

𝑝𝑁+1
𝐴 + 𝑞𝑁+1

𝐴

+ 𝑐𝑆
𝐵𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖−1

𝑘=0

) 𝑃𝑆
𝐵𝑖 ( ∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=𝑖+1

) 𝑃𝑆
𝐴𝑁

1

𝑝𝑁
𝐵 + 𝑞𝑁

𝐵

+ 𝑐𝑇
𝐴𝑁+1 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖−1

𝑘=0

) 𝑃𝑆
𝐵𝑖 ( ∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁

𝑘=𝑖+1

) (1 − 𝑞𝑁+1
𝐴 )(1 − 𝑝𝑁+1

𝐴 − 𝑞𝑁+1
𝐴 )𝑚𝑁+1−1

+ 𝑐𝑇
𝐵𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖−1

𝑘=0

) 𝑃𝑆
𝐵𝑖 ( ∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁

𝑘=𝑖+1

)] 𝑃𝑆
𝐴𝑖}

′
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= [𝑐𝑆
𝐴𝑁+1 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖−1

𝑘=0

) 𝑃𝑆
𝐵𝑖 ( ∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁

𝑘=𝑖+1

)
1 − (1 − 𝑝𝑁+1

𝐴 − 𝑞𝑁+1
𝐴 )𝑚𝑁+1

𝑝𝑁+1
𝐴 + 𝑞𝑁+1

𝐴

+ 𝑐𝑆
𝐵𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖−1

𝑘=0

) 𝑃𝑆
𝐵𝑖 ( ∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=𝑖+1

) 𝑃𝑆
𝐴𝑁

1

𝑝𝑁
𝐵 + 𝑞𝑁

𝐵

+ 𝑐𝑇
𝐴𝑁+1 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖−1

𝑘=0

) 𝑃𝑆
𝐵𝑖 ( ∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁

𝑘=𝑖+1

) (1

− 𝑞𝑁+1
𝐴 )(1 − 𝑝𝑁+1

𝐴 − 𝑞𝑁+1
𝐴 )𝑚𝑁+1−1

+ 𝑐𝑇
𝐵𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖−1

𝑘=0

) 𝑃𝑆
𝐵𝑖 ( ∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁

𝑘=𝑖+1

)]
𝑞𝑖

𝐴(1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴)
𝑚𝑖

𝑝𝑖
𝐴 + 𝑞𝑖

𝐴 ln(1

− 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴) 

Let 

𝑌𝑁+1 = [𝑐𝑆
𝐴𝑁+1 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖−1

𝑘=0

) 𝑃𝑆
𝐵𝑖 ( ∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁

𝑘=𝑖+1

)
1 − (1 − 𝑝𝑁+1

𝐴 − 𝑞𝑁+1
𝐴 )𝑚𝑁+1

𝑝𝑁+1
𝐴 + 𝑞𝑁+1

𝐴

+ 𝑐𝑆
𝐵𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖−1

𝑘=0

) 𝑃𝑆
𝐵𝑖 ( ∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁−1

𝑘=𝑖+1

) 𝑃𝑆
𝐴𝑁

1

𝑝𝑁
𝐵 + 𝑞𝑁

𝐵

+ 𝑐𝑇
𝐴𝑁+1 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖−1

𝑘=0

) 𝑃𝑆
𝐵𝑖 ( ∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁

𝑘=𝑖+1

) (1

− 𝑞𝑁+1
𝐴 )(1 − 𝑝𝑁+1

𝐴 − 𝑞𝑁+1
𝐴 )𝑚𝑁+1−1

+ 𝑐𝑇
𝐵𝑁 (∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑖−1

𝑘=0

) 𝑃𝑆
𝐵𝑖 ( ∏ 𝑃𝑆

𝐴𝑘𝑃𝑆
𝐵𝑘

𝑁

𝑘=𝑖+1

)]
𝑞𝑖

𝐴

𝑝𝑖
𝐴 + 𝑞𝑖

𝐴 ln(1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴) 
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Then, 

𝜕[𝐶(𝑚1, 𝑚2, … , 𝑚𝑁 , 𝑚𝑁+1) − 𝐶(𝑚1, 𝑚2, … , 𝑚𝑁)]

𝜕𝑚𝑖
= 𝑌𝑁+1(1 − 𝑝𝑖

𝐴 − 𝑞𝑖
𝐴)

𝑚𝑖
 

in which 𝑌𝑁+1 is a function of a series of parameters without 𝑚𝑖. 
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Appendix D Proof of Theorem 1 

Denote ∆𝐶(𝑚𝑁) = 𝐶(𝑚1, 𝑚2, … , 𝑚𝑁−1, 𝑚𝑁) − 𝐶(𝑚1, 𝑚2, … , 𝑚𝑁−1), then 

𝐶(𝑚1, 𝑚2, … , 𝑚𝑁) = 𝐶(𝑚1, 𝑚2, … , 𝑚𝑖) + ∆𝐶(𝑚𝑖+1) + ⋯ + ∆𝐶(𝑚𝑁) 

∴
𝜕𝐶(𝑚1, 𝑚2, … , 𝑚𝑁)

𝜕𝑚𝑖
=

𝜕[𝐶(𝑚1, 𝑚2, … , 𝑚𝑖) + ∆𝐶(𝑚𝑖+1) + ⋯ + ∆𝐶(𝑚𝑁)]

𝜕𝑚𝑖

=
𝜕𝐶(𝑚1, 𝑚2, … , 𝑚𝑖)

𝜕𝑚𝑖
+

𝜕∆𝐶(𝑚𝑖+1)

𝜕𝑚𝑖
+ ⋯ +

𝜕∆𝐶(𝑚𝑁)

𝜕𝑚𝑖
 

According to Proposition 1, 

𝜕𝐶(𝑚1, 𝑚2, … , 𝑚𝑖)

𝜕𝑚𝑖
= 𝑋𝑁(1 − 𝑝𝑖

𝐴 − 𝑞𝑖
𝐴)

𝑚𝑖−1
  

According to Proposition 2, 

𝜕∆𝐶(𝑚𝑖+1)

𝜕𝑚𝑖
= 𝑌𝑖+1(1 − 𝑝𝑖

𝐴 − 𝑞𝑖
𝐴)

𝑚𝑖
 

𝜕∆𝐶(𝑚𝑖+2)

𝜕𝑚𝑖
= 𝑌𝑖+2(1 − 𝑝𝑖

𝐴 − 𝑞𝑖
𝐴)

𝑚𝑖
 

⋮ 

𝜕∆𝐶(𝑚𝑁)

𝜕𝑚𝑖
= 𝑌𝑁(1 − 𝑝𝑖

𝐴 − 𝑞𝑖
𝐴)

𝑚𝑖
 

∴
𝜕𝐶(𝑚1, 𝑚2, … , 𝑚𝑁)

𝜕𝑚𝑖
=

𝜕𝐶(𝑚1, 𝑚2, … , 𝑚𝑖)

𝜕𝑚𝑖
+

𝜕∆𝐶(𝑚𝑖+1)

𝜕𝑚𝑖
+ ⋯ +

𝜕∆𝐶(𝑚𝑁)

𝜕𝑚𝑖

= 𝑋𝑁(1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴)
𝑚𝑖−1

+ ∑ 𝑌𝑘(1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴)
𝑚𝑖

𝑁

𝑘=𝑖+1

= [𝑋𝑁 + ∑ 𝑌𝑘(1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴)

𝑁

𝑘=𝑖+1

] (1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴)
𝑚𝑖−1

 

In which 𝑋𝑁, 𝑌𝑘 are functions of a series of parameters without 𝑚𝑖. 
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When condition 

𝑋𝑁 + ∑ 𝑌𝑘(1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴)

𝑁

𝑘=𝑖+1

< 0 

is satisfied, then no matter what the value of 𝑚𝑖 is, the partial derivative will always be 

negative. Thus the cost will be decreasing monotonically along with the coverage LOS. 

Therefore, the insurer should cover this episode, and there should be no limited LOS. 

When condition 

𝑋𝑁 + ∑ 𝑌𝑘(1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴)

𝑁

𝑘=𝑖+1

> 0 

is satisfied, then no matter what the value of 𝑚𝑖 is, the partial derivative will always be 

positive. Thus the cost will be increasing monotonically along with the coverage LOS. 

Therefore, the insurer should not cover this episode. 
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Appendix E Proof of Proposition 3 

This proposition can be proved by comparing two cases with the same total number of 

considered episodes. In the first case, 𝑁∗ of the episodes are covered without limited 

LOS, including the 𝑖𝑡ℎ episode, but not the (𝑖 + 1)𝑡ℎ episode. In the second case, the 

same 𝑁∗ episodes are covered without limited LOS, except that the 𝑖𝑡ℎ episode is not 

covered, while the (𝑖 + 1)𝑡ℎ episode is covered.  

Assumption 1: The probability of being cured will significantly decrease after every 

episode, i.e. 𝑞𝑖+1 ≪ 𝑞𝑖. 

Assumption 2: The probability of being transferred to the home- and community-based 

care setting will decrease after every episode, i.e. 𝑝𝑖+1 < 𝑝𝑖. 

Assumption 3: The daily cost of staying will significantly increase after every episode, 

i.e. 𝑐𝑆
𝐴𝑖+1 ≫ 𝑐𝑆

𝐴𝑖. 

Assumption 4: The cost of forced transition after every episode will remain the same, i.e. 

𝑐𝑇
𝐴𝑖+1 = 𝑐𝑇

𝐴𝑖. 

Consider a total number of 𝑁 episodes, and two cases. In the first case, 𝑁∗ of the 

episodes are covered without limited LOS, including the 𝑖𝑡ℎ episode, but not the 

(𝑖 + 1)𝑡ℎ episode. In the second case, the same 𝑁∗ episode are covered without limited 

LOS, except that the 𝑖𝑡ℎ episode is not covered, while the (𝑖 + 1)𝑡ℎ episode is covered. 

For the two cases, the cost is divided into three parts: the cost within the first (𝑖 − 1) 

episodes, the cost of the 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ episode, and the cost within the last 

(𝑁 − 𝑖 − 1) episodes. 
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For the first (𝑖 − 1) episodes, the cost for the two cases will be the same, since same 

episodes are covered. 

For the last (𝑁 − 𝑖 − 1) episodes, the cost will be dependent on the probability of 

entering the (𝑖 + 2)𝑡ℎ episode. Also, since same episodes are covered, the independent 

cost will be the same, which is assumed to be 𝐶(𝑁 − 𝑖 − 1).  

Then the cost for case 1 will be 

𝑃𝐸
𝐴𝑖+2𝐶(𝑁 − 𝑖 − 1) = 𝑃𝐸

𝐴𝑖𝑃𝑆
𝐴𝑖𝑃𝑆

𝐵𝑖𝑃𝑆
𝐵𝑖+1𝐶(𝑁 − 𝑖 − 1) 

While the cost of case 2 will be 

𝑃𝐸
𝐴𝑖+2𝐶(𝑁 − 𝑖 − 1) = 𝑃𝐸

𝐴𝑖𝑃𝑆
𝐴𝑖+1𝑃𝑆

𝐵𝑖𝑃𝑆
𝐵𝑖+1𝐶(𝑁 − 𝑖 − 1) 

According to Assumption 1 and 2, 

𝑃𝑆
𝐴𝑖+1 =

𝑝𝑖+1
𝐴

𝑝𝑖+1
𝐴 + 𝑞𝑖+1

𝐴 =
1

1 +
𝑞𝑖+1

𝐴

𝑝𝑖+1
𝐴

>
1

1 +
𝑞𝑖

𝐴

𝑝𝑖
𝐴

= 𝑃𝑆
𝐴𝑖 

Therefore, for the last (𝑁 − 𝑖 − 1) episodes, the cost for case 1 will be lower than case 2. 

For the 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ episode, the cost for case 1 will be 

𝐶(𝐶𝑎𝑠𝑒 1) = 𝑃𝐸
𝐴𝑖 (𝑐𝑆

𝐴𝑖
1

𝑝𝑖
𝐴 + 𝑞𝑖

𝐴 + 𝑐𝑆
𝐵𝑖𝑃𝑆

𝐴𝑖
1

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵 + 𝑐𝑇
𝐴𝑖+1

1 − 𝑞𝑖+1
𝐴

1 − 𝑝𝑖+1
𝐴 − 𝑞𝑖+1

𝐴

𝑝𝑖
𝐵

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵

+ 𝑐𝑇
𝐵𝑖𝑃𝑆

𝐴𝑖
𝑝𝑖

𝐵

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵) 

While the cost for case 2 will be 

𝐶(𝐶𝑎𝑠𝑒 2) = 𝑃𝐸
𝐴𝑖 (𝑐𝑆

𝐴𝑖+1
1

𝑝𝑖+1
𝐴 + 𝑞𝑖+1

𝐴

𝑝𝑖
𝐵

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵 + 𝑐𝑆
𝐵𝑖

1

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵 + 𝑐𝑇
𝐴𝑖

1 − 𝑞𝑖
𝐴

1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴

+ 𝑐𝑇
𝐵𝑖

𝑝𝑖
𝐵

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵) 
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According to Assumption 1, 2 and 3, 

𝑐𝑆
𝐴𝑖

1

𝑝𝑖
𝐴 + 𝑞𝑖

𝐴 < 𝑐𝑆
𝐴𝑖

1

𝑝𝑖+1
𝐴 + 𝑞𝑖+1

𝐴 ≪ 𝑐𝑆
𝐴𝑖+1 1

𝑝𝑖+1
𝐴 + 𝑞𝑖+1

𝐴

𝑝𝑖
𝐵

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵 

According to Assumption 1, 2 and 4, 

𝑐𝑇
𝐴𝑖+1

1 − 𝑞𝑖+1
𝐴

1 − 𝑝𝑖+1
𝐴 − 𝑞𝑖+1

𝐴

𝑝𝑖
𝐵

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵 < 𝑐𝑇
𝐴𝑖+1

1 − 𝑞𝑖
𝐴

1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴 = 𝑐𝑇
𝐴𝑖

1 − 𝑞𝑖
𝐴

1 − 𝑝𝑖
𝐴 − 𝑞𝑖

𝐴 

Also, since 𝑃𝑆
𝐴𝑖 < 1,  

𝑐𝑆
𝐵𝑖𝑃𝑆

𝐴𝑖
1

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵 < 𝑐𝑆
𝐵𝑖

1

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵 , 𝑐𝑇
𝐵𝑖𝑃𝑆

𝐴𝑖
𝑝𝑖

𝐵

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵 < 𝑐𝑇
𝐵𝑖

𝑝𝑖
𝐵

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵 

∴ 𝐶(𝐶𝑎𝑠𝑒 1) < 𝐶(𝐶𝑎𝑠𝑒 2) 

Therefore, it is always better to cover the patient as early as possible. 
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Appendix F Proof of Theorem 3 

Theorem 3 can be proved by comparing two cases with the same number of considered 

episodes in total. In the first case, the first 𝑛 episodes are covered without limited LOS. In 

the second case, the first (𝑛 + 1) episodes are covered without limited LOS.  

Consider a total number of 𝑁 episodes, and two cases. In the first case, the first 𝑛 

episodes are covered without limited LOS. In the second case, the first (𝑛 + 1) episodes 

are covered without limited LOS.  

For the first 𝑛 episodes, the cost for the two cases will be the same, since same episodes 

are covered. For the last (𝑁 − 𝑛) episodes, the cost for case 1 will be 

𝐶(𝐶𝑎𝑠𝑒 1) = 𝑃𝐸
𝐴𝑛+1 [𝑐𝑇

𝐴𝑛+1 + 𝑐𝑆
𝐵𝑛+1

1

𝑝𝑛+1
𝐵 + 𝑞𝑛+1

𝐵 + 𝑐𝑇
𝐵𝑖+1

𝑝𝑛+1
𝐵

𝑝𝑛+1
𝐵 + 𝑞𝑛+1

𝐵

+ ∑ ( ∏
𝑝𝑗

𝐵

𝑝𝑗
𝐵 + 𝑞𝑗

𝐵

𝑖

𝑗=𝑛+1

) (𝑐𝑇
𝐴𝑖 + 𝑐𝑆

𝐵𝑗 1

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵 + 𝑐𝑇

𝐵𝑗 𝑝𝑖
𝐵

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵)

𝑁

𝑖=𝑛+2

] 

While for case 2, the cost will be 

𝐶(𝐶𝑎𝑠𝑒 2) = 𝑃𝐸
𝐴𝑛+1 {𝑐𝑆

𝐴𝑛+1
1

𝑝𝑛+1
𝐴 + 𝑞𝑛+1

𝐴

+ 𝑃𝑆
𝐴𝑛+1 [𝑐𝑆

𝐵𝑛+1
1

𝑝𝑛+1
𝐵 + 𝑞𝑛+1

𝐵 + 𝑐𝑇
𝐵𝑖+1

𝑝𝑛+1
𝐵

𝑝𝑛+1
𝐵 + 𝑞𝑛+1

𝐵

+ ∑ ( ∏
𝑝𝑗

𝐵

𝑝𝑗
𝐵 + 𝑞𝑗

𝐵

𝑖

𝑗=𝑛+1

) (𝑐𝑇
𝐴𝑖 + 𝑐𝑆

𝐵𝑗 1

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵 + 𝑐𝑇

𝐵𝑗 𝑝𝑖
𝐵

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵)

𝑁

𝑖=𝑛+2

]} 
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Therefore, when the decremented cost of transition overwhelms the incremental cost of 

staying, condition 

𝑐𝑇
𝐴𝑛+1 + (1 − 𝑃𝑆

𝐴𝑛+1) ∑ ( ∏
𝑝𝑗

𝐵

𝑝𝑗
𝐵 + 𝑞𝑗

𝐵

𝑖

𝑗=𝑛+1

) 𝑐𝑇
𝐴𝑖

𝑁

𝑖=𝑛+2

> 𝑐𝑆
𝐴𝑛+1

1

𝑝𝑛+1
𝐴 + 𝑞𝑛+1

𝐴

− (1 − 𝑃𝑆
𝐴𝑛+1) [𝑐𝑆

𝐵𝑛+1
1

𝑝𝑛+1
𝐵 + 𝑞𝑛+1

𝐵 + 𝑐𝑇
𝐵𝑖+1

𝑝𝑛+1
𝐵

𝑝𝑛+1
𝐵 + 𝑞𝑛+1

𝐵

+ ∑ ( ∏
𝑝𝑗

𝐵

𝑝𝑗
𝐵 + 𝑞𝑗

𝐵

𝑖

𝑗=𝑛+1

) (𝑐𝑆

𝐵𝑗 1

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵 + 𝑐𝑇

𝐵𝑗 𝑝𝑖
𝐵

𝑝𝑖
𝐵 + 𝑞𝑖

𝐵)

𝑁

𝑖=𝑛+2

] 

is satisfied, 𝐶(𝐶𝑎𝑠𝑒 1) > 𝐶(𝐶𝑎𝑠𝑒 2), and it is better to cover one more episode. 

Generally, when the cost of forced transition is low, covering one more episode will 

increase the cost of staying more significantly than decrease the cost of transition, and the 

insurer will choose not to cover the additional episode. Vice versa. 
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