81 research outputs found

    Growth of quantum three-dimensional structure of InGaAs emitting at ~1 µm applicable for a broadband near-infrared light source

    Get PDF
    We obtained a high-intensity and broadband emission centered at ~1 µm from InGaAs quantum three-dimensional (3D) structures grown on a GaAs substrate using molecular beam epitaxy. An InGaAs thin layer grown on GaAs with a thickness close to the critical layer thickness is normally affected by strain as a result of the lattice mismatch and introduced misfit dislocations. However, under certain growth conditions for the In concentration and growth temperature, the growth mode of the InGaAs layer can be transformed from two-dimensional to 3D growth. We found the optimal conditions to obtain a broadband emission from 3D structures with a high intensity and controlled center wavelength at ~1 µm. This method offers an alternative approach for fabricating a broadband near-infrared light source for telecommunication and medical imaging systems such as for optical coherence tomography

    Intrinsic Shape of Star-Forming BzK Galaxies at z~2 in GOODS-N

    Get PDF
    We study structure of star-forming galaxies at z~2 in GOODS-N field selected as sBzK galaxies down to K_{AB} <24.0 mag. Among 1029 sBzK galaxies, 551 galaxies (54%) show a single component in ACS/F850LP image obtained with the Hubble Space Telescope; the rest show multiple components. We fit the single-component sBzK galaxies with the single S\'ersic profile using the ACS/F850LP image and find that a majority of them (64%) show S\'ersic index of n=0.5-2.5, indicating that they have a disk-like structure. The resulting effective radii typically range from 1.0 to 3.0 kpc in the rest-frame UV wavelength. After correcting the effective radii to those in the rest-frame optical wavelength, we find that the single-component sBzK galaxies locate in the region where the local and z~1 disk galaxies distribute in the stellar mass-size diagram, suggesting comparable surface stellar mass density between the sBzK and z~0-1 disk galaxies. All these properties suggest that the single-component sBzK galaxies are progenitors of the present-day disk galaxies. However, by studying their intrinsic shape through comparison between the observed distribution of apparent axial ratios and the distribution for triaxial models with axes (A>B>C), we find that the mean B/A ratio is 0.61^{+0.05}_{-0.08} and disk thickness C/A is 0.28^{+0.03}_{-0.04}. This indicates that the single-component sBzK galaxies at z~2 have a bar-like or oval shape rather than a round disk shape. The shape seems to resemble to a bar/oval structure that form through bar instability; if it is the case, the intrinsic shape may give us a clue to understand dynamical evolution of baryonic matter in a dark matter halo.Comment: 14 pages, 13 figure, 2 tables, Accepted for publication in Ap

    Development of a broadband superluminescent diode based on self-assembled InAs quantum dots and demonstration of high-axial-resolution optical coherence tomography imaging

    Get PDF
    We developed a near-infrared (NIR) superluminescent diode (SLD) based on self-assembled InAs quantum dots (QDs) and demonstrated high-axial-resolution optical coherence tomography (OCT) imaging using this QD-based SLD (QD-SLD). The QD-SLD utilized InAs QDs with controlled emission wavelengths as a NIR broadband light emitter, and a tilted waveguide with segmented electrodes was prepared for edge-emitting broadband electroluminescence (EL) spanning approximately 1–1.3 μm. The bandwidth of the EL spectrum was increased up to 144 nm at a temperature of 25 °C controlled using a thermoelectric cooler. The inverse Fourier transform of the EL spectrum predicted a minimum resolution of 3.6 μm in air. The QD-SLD was subsequently introduced into a spectral-domain (SD)-OCT setup, and SD-OCT imaging was performed for industrial and biological test samples. The OCT images obtained using the QD-SLD showed an axial resolution of ~4 μm, which was almost the same as that predicted from the spectrum. This axial resolution is less than the typical size of a single biological cell (~5 μm), and the practical demonstration of high-axial-resolution OCT imaging shows the application of QD-SLDs as a compact OCT light source, which enables the development of a portable OCT system

    Average Metallicity and Star Formation Rate of Lya Emitters Probed by a Triple Narrow-Band Survey

    Full text link
    We present the average metallicity and star-formation rate of Lya emitters (LAEs) measured from our large-area survey with three narrow-band (NB) filters covering the Lya, [OII]3727, and Ha+[NII] lines of LAEs at z=2.2. We select 919 z=2.2 LAEs from Subaru/Suprime-Cam NB data in conjunction with Magellan/IMACS spectroscopy. Of these LAEs, 561 and 105 are observed with KPNO/NEWFIRM near-infrared NB filters whose central wavelengths are matched to redshifted [OII] and Ha nebular lines, respectively. By stacking the near-infrared images of the LAEs, we successfully obtain average nebular-line fluxes of LAEs, the majority of which are too faint to be identified individually by narrow-band imaging or deep spectroscopy. The stacked object has an Ha luminosity of 1.7x10^{42} erg s^{-1} corresponding to a star formation rate (SFR) of 14 M_{sun} yr^{-1}. We place, for the first time, a firm lower limit to the average metallicity of LAEs of Z>~0.09 Z_{sun} (2sigma) based on the [OII]/(Ha+[NII]) index together with photo-ionization models and empirical relations. This lower limit of metallicity rules out the hypothesis that LAEs, so far observed at z~2, are extremely metal poor (Z<2x10^{-2} Z_{sun}) young galaxies at the 4sigma level. This limit is higher than a simple extrapolation of the observed mass-metallicity relation of z~2 UV-selected galaxies toward lower masses (5x10^{8} M_{sun}), but roughly consistent with a recently proposed fundamental mass-metallicity relation when the LAEs' relatively low SFR is taken into account. The Ha and Lya luminosities of our NB-selected LAEs indicate that the escape fraction of Lya photons is ~12-30 %, much higher than the values derived for other galaxy populations at z~2.Comment: 21 pages, 15 figures, 8 tables. Accepted for publication in Ap

    EMPRESS. II. Highly Fe-Enriched Metal-poor Galaxies with 1.0\sim 1.0 (Fe/O)_\odot and 0.020.02 (O/H)_\odot : Possible Traces of Super Massive (>300M>300 M_{\odot}) Stars in Early Galaxies

    Full text link
    We present element abundance ratios and ionizing radiation of local young low-mass (~10610^{6} M_sun) extremely metal poor galaxies (EMPGs) with a 2% solar oxygen abundance (O/H)_sun and a high specific star-formation rate (sSFR~300 Gyr1^{-1}), and other (extremely) metal poor galaxies, which are compiled from Extremely Metal-Poor Representatives Explored by the Subaru Survey (EMPRESS) and the literature. Weak emission lines such as [FeIII]4658 and HeII4686 are detected in very deep optical spectra of the EMPGs taken with 8m-class telescopes including Keck and Subaru (Kojima et al. 2019, Izotov et al. 2018), enabling us to derive element abundance ratios with photoionization models. We find that neon- and argon-to-oxygen ratios are comparable to those of known local dwarf galaxies, and that the nitrogen-to-oxygen abundance ratios (N/O) are lower than 20% (N/O)_sun consistent with the low oxygen abundance. However, the iron-to-oxygen abundance ratios (Fe/O) of the EMPGs are generally high; the EMPGs with the 2%-solar oxygen abundance show high Fe/O ratios of ~90-140% (Fe/O)_sun, which are unlikely explained by suggested scenarios of Type Ia supernova iron productions, iron's dust depletion, and metal-poor gas inflow onto previously metal-riched galaxies with solar abundances. Moreover, these EMPGs have very high HeII4686/Hβ\beta ratios of ~1/40, which are not reproduced by existing models of high-mass X-ray binaries whose progenitor stellar masses are less than 120 M_sun. Comparing stellar-nucleosynthesis and photoionization models with a comprehensive sample of EMPGs identified by this and previous EMPG studies, we propose that both the high Fe/O ratios and the high HeII4686/Hβ\beta ratios are explained by the past existence of super massive (>>300 M_sun) stars, which may evolve into intermediate-mass black holes (\gtrsim100 M_sun).Comment: ApJ in press. 23 pages, 7 Figures, 6 Table

    Extremely Metal-Poor Representatives Explored by the Subaru Survey (EMPRESS). I. A Successful Machine Learning Selection of Metal-Poor Galaxies and the Discovery of a Galaxy with M*<10^6 M_sun and 0.016 Z_sun

    Full text link
    We have initiated a new survey for local extremely metal-poor galaxies (EMPGs) with Subaru/Hyper Suprime-Cam (HSC) large-area (~500 deg^2) optical images reaching a 5 sigma limit of ~26 magnitude, about 100 times deeper than the Sloan Digital Sky Survey (SDSS). To select Z/Z_sun<0.1 EMPGs from ~40 million sources detected in the Subaru images, we first develop a machine-learning (ML) classifier based on a deep neural network algorithm with a training data set consisting of optical photometry of galaxy, star, and QSO models. We test our ML classifier with SDSS objects having spectroscopic metallicity measurements, and confirm that our ML classifier accomplishes 86%-completeness and 46%-purity EMPG classifications with photometric data. Applying our ML classifier to the photometric data of the Subaru sources as well as faint SDSS objects with no spectroscopic data, we obtain 27 and 86 EMPG candidates from the Subaru and SDSS photometric data, respectively. We conduct optical follow-up spectroscopy for 10 out of our EMPG candidates with Magellan/LDSS-3+MagE, Keck/DEIMOS, and Subaru/FOCAS, and find that the 10 EMPG candidates are star-forming galaxies at z=0.007-0.03 with large H_beta equivalent widths of 104-265 A, stellar masses of log(M*/M_sun)=5.0-7.1, and high specific star-formation rates of ~300 Gyr^{-1}, which are similar to those of early galaxies at z>6 reported recently. We spectroscopically confirm that 3 out of 10 candidates are truly EMPGs with Z/Z_sun<0.1, one of which is HSC J1631+4426, the most metal-poor galaxy with Z/Z_sun=0.016 reported ever.Comment: 30 pages, 26 figures, and 8 tables; (Revision: metallicities changed due to the use of a more pricise dust correction method, but conclusion does not change, Minor: a table, some figures, and sentences are added for a clear explanation.

    First Data Release of the Hyper Suprime-Cam Subaru Strategic Program

    Full text link
    The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded 300 nights of observing time at the Subaru Telescope and it started in March 2014. This paper presents the first public data release of HSC-SSP. This release includes data taken in the first 1.7 years of observations (61.5 nights) and each of the Wide, Deep, and UltraDeep layers covers about 108, 26, and 4 square degrees down to depths of i~26.4, ~26.5, and ~27.0 mag, respectively (5sigma for point sources). All the layers are observed in five broad bands (grizy), and the Deep and UltraDeep layers are observed in narrow bands as well. We achieve an impressive image quality of 0.6 arcsec in the i-band in the Wide layer. We show that we achieve 1-2 per cent PSF photometry (rms) both internally and externally (against Pan-STARRS1), and ~10 mas and 40 mas internal and external astrometric accuracy, respectively. Both the calibrated images and catalogs are made available to the community through dedicated user interfaces and database servers. In addition to the pipeline products, we also provide value-added products such as photometric redshifts and a collection of public spectroscopic redshifts. Detailed descriptions of all the data can be found online. The data release website is https://hsc-release.mtk.nao.ac.jp/.Comment: 34 pages, 20 figures, 7 tables, moderate revision, accepted for publication in PAS

    The Hyper Suprime-Cam SSP Survey: Overview and Survey Design

    Full text link
    Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2m Subaru telescope on the summit of Maunakea in Hawaii. A team of scientists from Japan, Taiwan and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg2^2 in five broad bands (grizygrizy), with a 5σ5\,\sigma point-source depth of r26r \approx 26. The Deep layer covers a total of 26~deg2^2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg2^2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey.Comment: 14 pages, 7 figures, 5 tables. Corrected for a typo in the coordinates of HSC-Wide spring equatorial field in Table

    Growth of quantum three-dimensional structure of InGaAs emitting at ~1 µm applicable for a broadband near-infrared light source

    Get PDF
    We obtained a high-intensity and broadband emission centered at ~1 µm from InGaAs quantum three-dimensional (3D) structures grown on a GaAs substrate using molecular beam epitaxy. An InGaAs thin layer grown on GaAs with a thickness close to the critical layer thickness is normally affected by strain as a result of the lattice mismatch and introduced misfit dislocations. However, under certain growth conditions for the In concentration and growth temperature, the growth mode of the InGaAs layer can be transformed from two-dimensional to 3D growth. We found the optimal conditions to obtain a broadband emission from 3D structures with a high intensity and controlled center wavelength at ~1 µm. This method offers an alternative approach for fabricating a broadband near-infrared light source for telecommunication and medical imaging systems such as for optical coherence tomography

    EMPRESS. III. Morphology, Stellar Population, and Dynamics of Extremely Metal Poor Galaxies (EMPGs): Are EMPGs Local Analogs of High-zz Young Galaxies?

    Full text link
    We present the morphology and stellar population of 27 extremely metal poor galaxies (EMPGs) at z0z\sim0 with metallicities of 0.01--0.1 Z_{\odot}. We conduct multi-component surface brightness (SB) profile fitting for the deep Subaru/HSC ii-band images of the EMPGs with the {\sc Galfit} software, carefully removing the SB contributions of tails. We find that the EMPGs with a median stellar mass of log(M/M)=6.0\log(M_{*}/{\rm M}_{\odot})=6.0 have a median S{\'e}rsic index of n=1.1n=1.1 and a median effective radius of re=200r_{\rm e}=200 pc, suggesting that typical EMPGs have very compact disk. We compare the EMPGs with z6z\sim6 galaxies and local galaxies on the size-mass (rer_{\rm e}-MM_*) diagram, and identify that the majority of the EMPGs have a rer_{\rm e}-MM_* relation similar to z0z\sim0 star-forming galaxies rather than z6z\sim6 galaxies. Not every EMPG is a local analog of high-zz young galaxies in the rer_{\rm e}-MM_* relation. A spectrum of one pair of EMPG and tail, so far available, indicates that the tail is dynamically related to the EMPG with a median velocity difference of ΔV=101±32\Delta V=101\pm32 km s1^{-1}. This moderately-large ΔV\Delta V cannot be explained by the dynamics of the tail, but likely by the infall on the tail. For the first time, we may identify the metal-poor star-forming system just now infalling into the tail.Comment: ApJ in Pres
    corecore