36 research outputs found

    BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.)

    Get PDF
    Background: Although second generation sequencing (2GS) technologies allow re-sequencing of previously gold-standard-sequenced genomes, whole genome shotgun sequencing and de novo assembly of large and complex eukaryotic genomes is still difficult. Availability of a genome-wide physical map is therefore still a prerequisite for whole genome sequencing for genomes like barley. To start such an endeavor, large insert genomic libraries, i.e. Bacterial Artificial Chromosome (BAC) libraries, which are unbiased and representing deep haploid genome coverage, need to be ready in place. Result: Five new BAC libraries were constructed for barley (Hordeum vulgare L.) cultivar Morex. These libraries were constructed in different cloning sites (HindIII, EcoRI, MboI and BstXI) of the respective vectors. In order to enhance unbiased genome representation and to minimize the number of gaps between BAC contigs, which are often due to uneven distribution of restriction sites, a mechanically sheared library was also generated. The new BAC libraries were fully characterized in depth by scrutinizing the major quality parameters such as average insert size, degree of contamination (plate wide, neighboring, and chloroplast), empty wells and off-scale clones (clones with 250 fragments). Additionally a set of gene-based probes were hybridized to high density BAC filters and showed that genome coverage of each library is between 2.4 and 6.6 X. Conclusion: BAC libraries representing >20 haploid genomes are available as a new resource to the barley research community. Systematic utilization of these libraries in high-throughput BAC fingerprinting should allow developing a genome-wide physical map for the barley genome, which will be instrumental for map-based gene isolation and genome sequencing.Daniela Schulte, Ruvini Ariyadasa, Bujun Shi, Delphine Fleury, Chris Saski, Michael Atkins, Pieter deJong, Cheng-Cang Wu, Andreas Graner, Peter Langridge and Nils Stei

    Treatment of neuromyelitis optica: state-of-the-art and emerging therapies.

    Get PDF
    Neuromyelitis optica (NMO) is an autoimmune disease of the CNS that is characterized by inflammatory demyelinating lesions in the spinal cord and optic nerve, potentially leading to paralysis and blindness. NMO can usually be distinguished from multiple sclerosis (MS) on the basis of seropositivity for IgG antibodies against the astrocytic water channel aquaporin-4 (AQP4). Differentiation from MS is crucial, because some MS treatments can exacerbate NMO. NMO pathogenesis involves AQP4-IgG antibody binding to astrocytic AQP4, which causes complement-dependent cytotoxicity and secondary inflammation with granulocyte and macrophage infiltration, blood-brain barrier disruption and oligodendrocyte injury. Current NMO treatments include general immunosuppressive agents, B-cell depletion, and plasma exchange. Therapeutic strategies targeting complement proteins, the IL-6 receptor, neutrophils, eosinophils and CD19--all initially developed for other indications--are under clinical evaluation for repurposing for NMO. Therapies in the preclinical phase include AQP4-blocking antibodies and AQP4-IgG enzymatic inactivation. Additional, albeit currently theoretical, treatment options include reduction of AQP4 expression, disruption of AQP4 orthogonal arrays, enhancement of complement inhibitor expression, restoration of the blood-brain barrier, and induction of immune tolerance. Despite the many therapeutic options in NMO, no controlled clinical trials in patients with this condition have been conducted to date

    Nutraceutical properties and phytochemical characterization of wild Serbian fruits

    No full text
    Wild fruits grown in Serbia, i.e., elderberry (Sambucus nigra), hawthorn (Crataegus monogyna), cornelian cherry (Cornus mas), and blackthorn (Prunus spinosa), are rich in secondary metabolites. In this study, the polyphenolic composition of wild fruit extracts and their antioxidant capacity were investigated by in vitro assays. Elderberry was characterized by the presence of arbutin (a skin protector), and cornelian cherry by syringic and gallic acids. In blackthorn, at least 11 different phenolic compounds were reported for the first time, including vanillic acid and naringin, the metabolite present in the highest amount. Blackthorn extracts were the richest in polyphenols (11.24-18.70g GAE/kgFW) and had the highest activity in the DPPH radical test (180.93-267.11mMTE/mL), while cornelian cherry extracts showed the most effective ferric ion chelating (81.37-90.66%) and antityrosinase inhibition capacities (21.75-74.23%). No sample was able to scavenge NO. Using the principal component analysis, wild fruit samples were classified into four separate clusters due to distinctive phenolic profiles and antioxidant capacity. Our investigation showed how every fruit could be considered unique in terms of its phytonutrient content. Thus, Serbian wild fruits may be a great source of bioactive natural compounds and could be therefore considered particularly useful in food supplement production. Particularly, as a source of natural antioxidants, these species could be used to extend the shelf life of food products and replace synthetic antioxidants, avoiding potential health risks and toxicity
    corecore