24 research outputs found

    A novel absorption resonance for all-optical atomic clocks

    Full text link
    We report an experimental study of an all-optical three-photon-absorption resonance (known as a "N-resonance") and discuss its potential application as an alternative to atomic clocks based on coherent population trapping (CPT). We present measurements of the N-resonance contrast, width and light-shift for the D1 line of 87Rb with varying buffer gases, and find good agreement with an analytical model of this novel resonance. The results suggest that N-resonances are promising for atomic clock applications.Comment: 4 pages, 6 figure

    Cancellation of light-shifts in an N-resonance clock

    Full text link
    We demonstrate that first-order light-shifts can be cancelled for an all-optical, three-photon-absorption resonance ("N-resonance") on the D1 transition of Rb87. This light-shift cancellation enables improved frequency stability for an N-resonance clock. For example, using a table-top apparatus designed for N-resonance spectroscopy, we measured a short-term fractional frequency stability (Allan deviation) 1.5e-11 tau^(-1/2) for observation times 1s< tau < 50s. Further improvements in frequency stability should be possible with an apparatus designed as a dedicated N-resonance clock.Comment: 4 pages, 4 figure

    Comparison of 87Rb N-resonances for D1 and D2 transitions

    Full text link
    We report an experimental comparison of three-photon-absorption resonances (known as "N-resonances") for the D_1 and D_2 optical transitions of thermal 87Rb vapor. We find that the D_2 N-resonance has better contrast, a broader linewidth, and a more symmetric lineshape than the D_1 N-resonance. Taken together, these factors imply superior performance for frequency standards operating on alkali D_2 N-resonances, in contrast to coherent population trapping (CPT) resonances for which the D_2 transition provides poorer frequency standard performance than the D_1 transition.Comment: 3 pages, 4 figure

    The origins and spread of domestic horses from the Western Eurasian steppes

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: All collapsed and paired-end sequence data for samples sequenced in this study are available in compressed fastq format through the European Nucleotide Archive under accession number PRJEB44430, together with rescaled and trimmed bam sequence alignments against both the nuclear and mitochondrial horse reference genomes. Previously published ancient data used in this study are available under accession numbers PRJEB7537, PRJEB10098, PRJEB10854, PRJEB22390 and PRJEB31613, and detailed in Supplementary Table 1. The genomes of ten modern horses, publicly available, were also accessed as indicated in their corresponding original publications57,61,85-87.NOTE: see the published version available via the DOI in this record for the full list of authorsDomestication of horses fundamentally transformed long-range mobility and warfare. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling at Botai, Central Asia around 3500 BC. Other longstanding candidate regions for horse domestication, such as Iberia and Anatolia, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC driving the spread of Indo-European languages. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture

    Generalised hyper-Ramsey resonance with spinors

    No full text
    PAPER PRESENTED AT THE VIII SYMPOSIUM 'MPLP-2018'International audienceThe generalized hyper-Ramsey resonance formula originally published in Phys. Rev. A vol 92, 023416 (2015) is derived using a Cayley-Klein spinor parametrization. The shape of the interferometric resonance and the associated composite phase-shift are reformulated including all individual laser pulse parameters. Potential robustness of signal contrast and phase-shift of the wave-function fringe pattern can now be arbitrarily explored tracking any shape distortion due to systematic effects from the probe laser. An exact and simple analytical expression describing a Ramsey's method of separated composite oscillating laser fields with quantum state control allows us to accurately simulate all recent clock interrogation protocols under various pulse defects

    Ramsey Spectroscopy with Displaced Frequency Jumps

    No full text
    International audienceSophisticated Ramsey-based interrogation protocols using composite laser pulse sequences have been recently proposed to provide next-generation high-precision atomic clocks with a near perfect elimination of frequency shifts induced during the atom-probing field interaction.We propose here a simple alternative approach to the autobalanced Ramsey interrogation protocol and demonstrate its application to a cold-atom microwave clock based on coherent population trapping (CPT). The main originality of the method, based on two consecutive Ramsey sequences with different dark periods, is to sample the central Ramsey fringes with frequency jumps finely adjusted by an additional frequency-displacement concomitant parameter, scaling as the inverse of the dark period. The advantage of this displaced frequency-jump Ramsey method is that the local oscillator (LO) frequency is used as a single physical variable to control both servo loops of the sequence, simplifying its implementation and avoiding noise associated with controlling the LO phase. When tested using a CPT cold-atom clock, the DFJR scheme reduces the sensitivity of the clock frequency to variations of the light shifts by more than an order of magnitude compared with the standard Ramsey interrogation. This simple method can be applied in a wide variety of Ramsey-spectroscopy based applications including frequency metrology with CPT-based and optical atomic clocks, mass spectrometry, and precision spectroscopy

    Investigation of the high-contrast sub-Doppler absorption spikes observed in a cesium vapor cell under the dual-frequency regime

    Get PDF
    International audienceRecently, the new bright feature of Doppler-free resonance in a cesium vapor cell under the twofrequency counterpropagating light waves has been observed [1] (see Fig.1). It consists in observation of a natural-linewidth nonlinear resonance with very high contrast. In spite of this effect is becoming very useful tool for laser frequency stabilization in CPT atom clocks [2, 3], it has not been understood and studied well enough. Here we focus on the detailed experimental as well as theoretical study of the new effect. Three physical reasons have been revealed that can result in observation of enhanced absorption at the center of the resonance. Moreover, simultaneous and constructive action of thesereasons can greatly increase amplitude of the nonlinear resonance, which can be two times bigger than a wide Doppler background. Theory is based on a well-known -scheme of atomic energy levels. The scheme has provided us with very clear physical interpretation of the effect. The real structure of atomic energy levels with taking into account all magnetic sublevels has been also considered
    corecore