75 research outputs found

    Aerobic training with rhythmic functional movement: Influence on cardiopulmonary function, functional movement and Quality of life in the elderly women

    Get PDF
    The purpose of this study was to investigate the effects of rhythm of aerobic exercise in elderly women. Thirty subjects were randomly divided into two groups: The aerobic exercise with rhythm (experimental group, n=9) and aerobic exercise without rhythm (control group, n=10). All subjects performed aerobic exercise composed of functional movements. During the exercise, control group subjects were performed the functional movement exercise only to the beat without music or rhythm and experimental group subjects were performed the functional movement exercise to the rhythm of the music. All subjects performed exercise for 50 minutes, twice a week, total of 8 weeks. The forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and maximal voluntary ventilation (MVV) were measured. Functional movements were assessed using FMS (Functional Movement Screen). Quality of life (QOL) were assessed using SF-36. Evaluation was performed before and after 8 weeks of exercise and one month later for follow-up. The FVV, FVC1, MVV, FMS, and SF-36 have shown a significant difference in time as a result of the two-way repeated-measures analysis. The post mean change of FVC1, MVV, FMS, and SF-36 were significantly different between groups. In this study, aerobic exercise, which is composed of rhythmic functional movement, helped improve functional movement and QOL for the elderly women. When the experimental group and the control group were compared, the improvement of the experimental group with music and rhythm was more positive than the exercise using the same functional movement.This research was supported by the Daejeon University fund (2017)

    Floating Hem-o-Lok Clips in the Bladder without Stone Formation after Robot-Assisted Laparoscopic Radical Prostatectomy

    Get PDF
    Hem-o-Lok clips (Weck Surgical Instruments, Teleflex Medical, Durham, NC, USA) are widely used in robot-assisted laparoscopic radical prostatectomy because of their easy application and secure clamping. To date, there have been some reports of intravesical migration of these clips causing urethral erosion, bladder neck contractures, and subsequent calculus formation. We report the first case of bladder migration of Hem-o-Lok clips without stone formation after robot-assisted laparoscopic radical prostatectomy. The Hem-o-Lok clips were found during urethral dilation with a guide wire for bladder neck contracture under cystourethroscopy. The Hem-o-Lok clips were floating in the bladder without stone formation and were removed by a cystoscopic procedure

    Introduction of Transmembrane Inner Ear (tmie) Gene Can Recover the Hearing Impairment and Abnormal Behavior in the Circling Mouse

    Get PDF
    The spontaneous mutant circling mouse (cir/cir) shows a circling behavior and hearing loss. We produced transgenic mice overexpressing the causative gene, transmembrane inner ear (tmie), for the phenotypic rescue of the circling mouse. Through the continuous breeding with circling mice, the cir/cir homozygous mice carrying the transgene (cir/cir-tg) were produced. The rescued cir/cir -tg mice were able to swim in the water with proper orientation and did not show any circling behavior like wild type mice. Western blot and immunohistochemical analysis exhibited that the transgenic tmie was expressed in the inner ear. Inner and outer hair cells were recovered in the cochlea and spiral ganglion neurons were also recovered in the rescued mice. Auditory brainstem response (ABR) test demonstrated that the cir/cir -tg mice are able to respond to sound. This study demonstrates that tmie transgene can recover the hearing impairment and abnormal behavior in the circling mouse

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    • 

    corecore